skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 14, 2026

Title: Control of Gliding Motility and C. lytica Biofilm Iridescence via Substrate Mechanics
Abstract Structural coloration in biological systems arises from the interaction of light with micro‐ and nanoscale structures, producing vivid, pigment‐free optical effects. While this phenomenon is well‐documented in butterflies and birds, recent reports have revealed that certain microorganisms, particularly those in theBacteroidetesphylum, also exhibit striking structural coloration when formed into biofilms. In the marine bacteriumCellulophaga lytica(C. lytica), iridescence emerges dynamically during biofilm development and is tightly coupled to gliding motility, a surface‐associated mechanism of locomotion. However, the influence of environmental mechanics on this self‐organizing photonic behavior remains poorly understood. This investegation demonstrates how substrate properties, specifically agar stiffness and salt‐modulated stress relaxation, regulate the gliding motility and emergent iridescence ofC. lyticabiofilms. Time‐lapse imaging, quantitative optical analysis, and bulk rheological measurements demonstrate that increasing agar stiffness enhances early‐stage collective motility and promotes the formation of green‐iridescent biofilms. Furthermore, salt concentration modulates the viscoelastic properties of the substrate, impacting both motility dynamics and the spatial evolution of structural color. Correlating substrate stiffness and development time with observed dominant iridescent hue enables the construction of a phase map revealing distinct regimes of photonic behavior, thus providing a framework for designing biologically‐inspired living optical systems with customizable structural colour.  more » « less
Award ID(s):
2219558
PAR ID:
10652523
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Advanced Functional Materials
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. vonHoldt, Bridgett (Ed.)
    Abstract Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes. 
    more » « less
  2. Abstract We demonstrate shear‐printed layered photonic films with vivid structural coloration from bio‐derived cellulose nanocrystals and highly aligned Ti3C2TxMXene nanoflakes. These ultrathin films (700–1500 nm) show high light transmittance above 40% in the visible range. In reflectance mode, however, the films appear vividly colored and iridescent due to the multiple distinct photonic bandgaps in the visible and near‐infrared ranges, which are rarely observed in CNC composites. The structural coloration is controlled by the stacking of MXene nanoscale‐thin layers separated by the thicker cellulose nanocrystals matrix, as confirmed by photonic simulations. The unique combination of distinctly different optical appearances in transmittance and reflectance modes occurs in films printed with just a few layers. This is because of the molecularly smooth interfaces and the high refractive contrast between bio‐based and inorganic phases, which result in a concurrence of constructive and destructive interference. These lamellar biophotonic films open the possibilities for advanced radiative cooling, camouflaging, multifunctional capacitors, and optical filtration applications, while the cellulose nanocrystals matrix strengthens their flexibility, robustness, and facilitates sustainability. 
    more » « less
  3. Many animals exhibit structural colors, which are often iridescent, meaning that the perceived colors change with illumination conditions and viewing perspectives. Biological iridescence is usually caused by multilayers or other periodic structures in animal tissues, which selectively reflect light of certain wavelengths and often result in a shiny appearance---which almost always comes with spatially varying highlights, thanks to randomness and irregularities in the structures. Previous models for biological iridescence tend to each target one specific structure, and most models only compute large-area averages, overlooking spatial variation in iridescent appearance. In this work, we build appearance models for biological iridescence using bird feathers as our case study, investigating different types of feathers with a variety of structural coloration mechanisms. We propose an approximate wave simulation method that takes advantage of quasi-regular structures while efficiently modeling the effects of natural structural irregularities. We further propose a method to distill our simulation results into distributions of BRDFs, generated using noise functions, that preserve relevant statistical properties of the simulated BRDFs. This allows us to model the spatially varying, glittery appearance commonly seen on feathers. Our BRDFs are practical and efficient, and we present renderings of multiple types of iridescent feathers with comparisons to photographic images. 
    more » « less
  4. Abstract The ability of bacteria to colonize and grow on different surfaces is an essential process for biofilm development. Here, we report the use of synthetic hydrogels with tunable stiffness and porosity to assess physical effects of the substrate on biofilm development. Using time-lapse microscopy to track the growth of expanding Serratia marcescens colonies, we find that biofilm colony growth can increase with increasing substrate stiffness, unlike what is found on traditional agar substrates. Using traction force microscopy-based techniques, we find that biofilms exert transient stresses correlated over length scales much larger than a single bacterium, and that the magnitude of these forces also increases with increasing substrate stiffness. Our results are consistent with a model of biofilm development in which the interplay between osmotic pressure arising from the biofilm and the poroelastic response of the underlying substrate controls biofilm growth and morphology. 
    more » « less
  5. Abstract The brilliant appearance of Easter Egg weevils, genusPachyrhynchus(Coleoptera, Curculionidae), originates from complex dielectric nanostructures within their elytral scales and elytra. Previous work, investigating singular members of thePachyrhynchusshowed the presence of either quasi‐ordered or ordered 3D photonic crystals based on the single diamond () symmetry in their scales. However, little is known about the diversity of the structural coloration mechanisms within the family. Here, the optical properties withinPachyrhynchusare investigated by systematically identifying their spectral and structural characteristics. Four principal traits that vary their appearance are identified and the evolutionary history of these traits to identify ecological trends are reconstructed. The results indicate that the coloration mechanisms across the Easter Egg weevils are diverse and highly plastic across closely related species with features appearing at multiple independent times across their phylogeny. This work lays a foundation for a better understanding of the various forms of quasi‐ordered and ordered diamond photonic crystal within arthropods. 
    more » « less