skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping and impact of digital learning tools designed to support engineering pretransfer students
Many websites and digital tools have emerged to support pretransfer students. However, there is little understanding of the perception of availability and accessibility of these digital tools. This gap is even wider for engineering transfer contexts. Since engineering students transfer differently and need more preparation, more needs to be known about engineering pretransfer. This qualitative study of elite interviews, guided by transfer student capital theory, integrates data from interviews with transfer experts and researchers, an analysis of literature, and an Internet search. The three themes emerging from this data highlight (1) the importance of accessible, accurate, and utilizable information; (2) the need for tools and resources developed for transfer students; and (3) the lack of digital resources for engineering transfer contexts. This study provides an expansive list of digital transfer tools and identifies ways to improve upon and expand these existing resources, especially into engineering education contexts.  more » « less
Award ID(s):
2144213
PAR ID:
10504230
Author(s) / Creator(s):
;
Publisher / Repository:
ASEE SE Proceedings
Date Published:
Journal Name:
ASEE Southeastern Annual Conference Proceedings
Subject(s) / Keyword(s):
Digital tools, engineering transfer, transfer student capital, two-year college
Format(s):
Medium: X
Location:
Marietta, GA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The COVID‐19 pandemic caused an abrupt change in educational programs worldwide, including workforce development education in community colleges. Given the hands‐on requirements of these programs, considerations for changes included if and how instructors and students could maintain academic continuity during the pandemic. This article focuses on aviation maintenance technology schools (AMTS) as a case study to understand how programs that rely heavily on hands‐on learning responded to COVID‐19 significant disruption to education. The Federal Aviation Administration (FAA) must approve educational training for aviation maintenance careers, and the FAA requires specific hands‐on activities in the curriculum. Of the 182 AMTS in the United States, 143 are located within community colleges. We conducted 43 interviews with AMTS students, administrators, and instructors from 18 different community colleges. Following content analysis of the interviews, the authors identified six findings related to how these programs responded to the pandemic, with special attention to maintaining academic stability. The article advocates for integrating digital learning tools (DLT) to create resilient educational programs when disruptions occur. These tools allow for students to continue to asynchronously practice the procedures and familiarize themselves with the materials needed for projects, provide students immediate feedback on their learning, and save schools money on expensive resources when students require extra practice on certain skills and processes. The application of these tools is relevant beyond the pandemic, helping students in many scenarios succeed in the face of natural disasters, family obligations, and the need for extra learning resources. 
    more » « less
  2. It is well-established that students have difficulty transferring theory and skills between courses in their undergraduate curriculum. At the same time, many college-level courses only concern material relating to the course itself and do not cover how this material might be used elsewhere. It is unsurprising, then, that students are unable to transfer and integrate knowledge from multiple areas into new problems as part of capstone design courses, for example, or in their careers. More work is required to better enable students to transfer knowledge between their courses, learn skills and theory more deeply, and to form engineers who are better able to adapt to new situations and solve “systems-level” problems. Various authors in both the cognitive and disciplinary sciences have discussed these difficulties with the transfer of knowledge, and noted the need to develop tools and techniques for promoting knowledge transfer, as well as to help students develop cross-course connections. This work will address these barriers to knowledge transfer, and crucially develop the needed activities and practices for promoting transfer by answering the following research questions: (1) What are the primary challenges experienced by students when tasked with transferring theory and skills from prior courses, specifically mathematics and physics? (2) What methods of prior knowledge activation are most effective in enabling students to apply this prior knowledge in new areas of study? Here, we present a summary, to date, of the findings of this investigation. These findings are based on an analysis of the problem solving techniques employed by students in various years of their undergraduate program as well as faculty experts. A series of n=23 think aloud interviews have been conducted in which participants were asked to solve a typical engineering statics problem that also requires mathematical skills to solve. Based on participant performance and verbalizations in these interviews, various barriers to the knowledge transfer process were identified (lack of prior knowledge, accuracy of prior knowledge, conceptual understanding, lack of teaching of applications, language of problem, curricular mapping). At the same time, several interventions designed to promote the transfer of knowledge were incorporated into the interviews and tested. Initial results demonstrated the potential effectiveness of these interventions (detailed in the poster/paper) but questions were raised as to whether participants truly understood the underlying concepts they were being asked to transfer. This poster presentation will cover a holistic representation of this study as well as the findings to date. 
    more » « less
  3. Problem-solving is a critical skill in the workplace, but recent college graduates are often deficient in problem-solving skills. Introductory STEM courses present engineering students with well-structured problems with single-path solutions that do not prepare students with the problem-solving skills they will need to solve complex problems within authentic engineering contexts. When presented with complex problems in authentic contexts, engineering students find it difficult to transfer the scientific knowledge learned in their STEM courses to solve these integrated and ill structured problems. By integrating physics laboratories with engineering design problems, students are taught to apply physics principles to solve ill-structured and complex engineering problems. The integration of engineering design processes to physics labs is meant to help students transfer physics learning to engineering problems, as well as to transfer the design skills learned in their engineering courses to the physics lab. We hypothesize this integration will help students become better problem solvers when they go out to industry after graduation. The purpose of this study is to examine how students transfer their understanding of physics concepts to solve ill-structured engineering problems by means of an engineering design project in a physics laboratory. We use a case-study methodology to examine two cases and analyze the cases using a lens of co-regulated learning and transfer between physics and engineering contexts. Observations were conducted using transfer lenses. That is, we observed groups during the physics labs for evidence of transfer. The research question for this study was, to what extent do students relate physics concepts with concepts from other materials (classes) through an engineering design project incorporated in a physics laboratory? Teams were observed over the course of 6 weeks as they completed the second design challenge. The cases presented in this study were selected using observations from the lab instructors of the team’s work in the first design project. Two teams, one who performed well, and one that performed poorly, were selected to be observed to provide insight on how students use physics concepts to engage in the design process. The second design challenge asked students to design an eco-friendly way of delivering packages of food to an island located in the middle of the river, which is home to critically endangered species. They are given constraints that the solution cannot disrupt the habitat in any way, nor can the animals come into contact directly with humans or loud noises. Preliminary results indicate that both teams successfully demonstrated transfer between physics and engineering contexts, and integrated physics concepts from multiple labs to complete the design project. Teams that struggle seem to be less connected with the design process at the beginning of the project and are less organized. In contrast, teams that are successful demonstrate greater co-regulated learning (communication, reflection, etc.) and focus on making connections between the physics concepts and principles of engineering design from their engineering course work. 
    more » « less
  4. In this research paper, we sought to understand how meta-affect influences the strength of engineering identity in first-year students, since strong engineering identity is correlated with retention. Meta-affect refers to affect about affect, cognition about affect, and monitoring of affect. Goldin’s research on meta-affect has suggested that there is a cycle wherein students’ beliefs establish meta-affective contexts that in turn shape the experience of affective pathways. We analyzed transcripts of interviews conducted with students during their first year in an engineering program. The primary goal of the interviews was to gain insight into engineering students’ affect towards math, science, and engineering and their engineering identity. For this comparative case study, we focus on three students with different engineering identities. Our goal was to investigate and provide evidence for the trends and relationships between beliefs, meta-affective-context, and affect and their influence on engineering identity. We found relationships between meta-affect and engineering identity related to specific beliefs: beliefs concerning getting help, the challenges of engineering, and performance ability. These relationships had different implications for the students’ identities depending on the students’ meta-affective contexts and affect. Understanding the relationship between these factors can help instructors promote more productive beliefs and meta-affect. This could potentially help strengthen engineering identity and increase retention of students within engineering. 
    more » « less
  5. Broadening participation in engineering is critical given the gap between the nation’s need for engineering graduates and its production of them. Efforts to spark interest in engineering among PreK-12 students have increased substantially in recent years as a result. However, past research has demonstrated that interest is not always sufficient to help students pursue engineering majors, particularly for rural students. In many rural communities, influential adults (family, friends, teachers) are often the primary influence on career choice, while factors such as community values, lack of social and cultural capital, limited course availability, and inadequate financial resources act as potential barriers. To account for these contextual factors, this project shifts the focus from individual students to the communities to understand how key stakeholders and organizations support engineering as a major choice and addresses the following questions: RQ1. What do current undergraduate engineering students who graduated from rural high schools describe as influences on their choice to attend college and pursue engineering as a post-secondary major? RQ2. How does the college choice process differ for rural students who enrolled in a 4-year university immediately after graduating from high school and those who transferred from a 2-year institution? RQ3. How do community members describe the resources that serve as key supports as well as the barriers that hinder support in their community? RQ4. What strategies do community members perceive their community should implement to enhance their ability to support engineering as a potential career choice? RQ5. How are these supports transferable or adaptable by other schools? What community-level factors support or inhibit transfer and adaptation? To answer the research questions, we employed a three-phase qualitative study. Phase 1 focused on understanding the experiences and perceptions of current [University Name] students from higher-producing rural schools. Analysis of focus group and interview data with 52 students highlighted the importance of interest and support from influential adults in students’ decision to major in engineering. One key finding from this phase was the importance of community college for many of our participants. Transfer students who attended community college before enrolling at [University Name] discussed the financial influences on their decision and the benefits of higher education much more frequently than their peers. In Phase 2, we used the findings from Phase 1 to conduct interviews within the participants’ home communities. This phase helped triangulate students’ perceptions with the perceptions and practices of others, and, equally importantly, allowed us to understand the goals, attitudes, and experiences of school personnel and local community members as they work with students. Participants from the students’ home communities indicated that there were few opportunities for students to learn more about engineering careers and provided suggestions for how colleges and universities could be more involved with students from their community. Phase 3, scheduled for Spring 2020, will bring the findings from Phases 1 and 2 back to rural communities via two participatory design workshops. These workshops, designed to share our findings and foster collaborative dialogue among the participants, will enable us to explore factors that support or hinder transfer of findings and to identify policies and strategies that would enhance each community’s ability to support engineering as a potential career choice. 
    more » « less