skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning from the COVID‐19 pandemic: Improving academic continuity in workforce development programs
Abstract The COVID‐19 pandemic caused an abrupt change in educational programs worldwide, including workforce development education in community colleges. Given the hands‐on requirements of these programs, considerations for changes included if and how instructors and students could maintain academic continuity during the pandemic. This article focuses on aviation maintenance technology schools (AMTS) as a case study to understand how programs that rely heavily on hands‐on learning responded to COVID‐19 significant disruption to education. The Federal Aviation Administration (FAA) must approve educational training for aviation maintenance careers, and the FAA requires specific hands‐on activities in the curriculum. Of the 182 AMTS in the United States, 143 are located within community colleges. We conducted 43 interviews with AMTS students, administrators, and instructors from 18 different community colleges. Following content analysis of the interviews, the authors identified six findings related to how these programs responded to the pandemic, with special attention to maintaining academic stability. The article advocates for integrating digital learning tools (DLT) to create resilient educational programs when disruptions occur. These tools allow for students to continue to asynchronously practice the procedures and familiarize themselves with the materials needed for projects, provide students immediate feedback on their learning, and save schools money on expensive resources when students require extra practice on certain skills and processes. The application of these tools is relevant beyond the pandemic, helping students in many scenarios succeed in the face of natural disasters, family obligations, and the need for extra learning resources.  more » « less
Award ID(s):
2037809
PAR ID:
10569809
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
New Directions for Community Colleges
Volume:
2024
Issue:
205
ISSN:
0194-3081
Page Range / eLocation ID:
143 to 151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In March 2020, students across the country experienced disruptions to their learning due to the COVID-19 crisis. Aviation Maintenance Technology Schools (AMTS) were no exception. These schools relied heavily on hands-on learning to train the next generation of aircraft maintenance technicians, but, for varying periods, students were unable to attend in-person classes and complete hands-on projects. Schools could delay learning until they could resume in-person classes, or they could switch to remote lectures and complete required projects once they returned in-person. Through a resilience engineering framework, this research explores AMTS’ responses to the crisis and the effect both disruption and institutional response had on student learning. The research team conducted 43 semi-structured interviews with administrators, instructors, and students at AMTS nationally. During these interviews, participants shared their personal and their Part 147 schools’ responses to the pandemic. Content analysis revealed that schools were under-prepared for any long-term disruption to their programs. Student learning suffered as a result. We discuss our research in relation to the effect on academic continuity and identify some ways which help mitigate disruptions. 
    more » « less
  2. Hydroinformatics and water data science topics are increasingly common in university graduate settings through dedicated courses and programs as well as incorporation into traditional water science courses. The technical tools and techniques emphasized by hydroinformatics and water data science involve distinctive instructional styles, which may be facilitated by online formats and materials. In the broader hydrologic sciences, there has been a simultaneous push for instructors to develop, share, and reuse content and instructional modules, particularly as the COVID-19 pandemic necessitated a wide scale pivot to online instruction. The experiences of hydroinformatics and water data science instructors in the effectiveness of content formats, instructional tools and techniques, and key topics can inform educational practice not only for those subjects, but for water science generally. This paper reports the results of surveys and interviews with hydroinformatics and water data science instructors. We address the effectiveness of instructional tools, impacts of the pandemic on education, important hydroinformatics topics, and challenges and gaps in hydroinformatics education. Guided by lessons learned from the surveys and interviews and a review of existing online learning platforms, we developed four educational modules designed to address shared topics of interest and to demonstrate the effectiveness of available tools to help overcome identified challenges. The modules are community resources that can be incorporated into courses and modified to address specific class and institutional needs or different geographic locations. Our experience with module implementation can inform development of online educational resources, which will advance and enhance instruction for hydroinformatics and broader hydrologic sciences for which students increasingly need informatics experience and technical skills. 
    more » « less
  3. There have been many questions and concerns raised by educators about how advanced technology students will adapt to remote learning during the COVID era. What will technician students’ academic engagement and persistence be like, and how will online learning affect their educational outcomes? What do technician students like about remote learning and what do they find challenging? What does online learning mean for hands-on applied and experiential learning, which are hallmarks of technical education programs? This paper explores pilot survey data collected in Florida from advanced technology students at two-year colleges. Five primary areas covered in the survey include enrollment status, access to technology, experience using a Learning Management System and learning online, impact on applied and experiential learning, and students’ background information. Key findings include decreased interaction between peers, increased reliance on instructors, and a significant decline in experiential learning such as labs, group projects, demonstrations, problem-based learning, and service-learning. The majority of students report feeling worried about making progress toward their degree, and about half worried about completing the semester. Two benefits students identified as having access to course materials all the time through the LMS and the flexibility of remote learning. Findings also show that technician students are quite diverse by way of age, partner status, having a family, race-ethnicity, employment status, and educational background. About one-third of students who responded are women. This paper concludes with several recommendations about the application of these research findings to address challenges technician students face learning online, including specific actions that instructors and programs can pursue to help retain students and provide support through the completion of degree programs. 
    more » « less
  4. null (Ed.)
    Experiential learning programs like internships and capstone projects are high-impact practices that allow engineering students to build a professional network, apply technical skills in a real-world context, and develop non-academic skills that employers need. In 2020 the COVID-19 pandemic and subsequent school closures impacted the entire engineering education ecosystem, particularly internships and other experiential learning opportunities. Virtual internship, an education intervention developed to broaden participation in experiential learning for non-traditional students, was rapidly deployed to address the disruption to internships caused by the COVID-19 pandemic. Key challenges that emerged during the implementation process include marketing the new program to existing partners, deciding on a remuneration structure, and navigating IP issues. The paper systematically steps through the implementation process and how the challenges mentioned above were addressed in practice. As life, school and internships return to normal in 2021 and beyond, the Virtual internship intervention can still play a valuable role in the experiential learning landscape. However, higher education institutions may need to intentionally de-couple the educational innovations rapidly developed during the COVID-19 pandemic from being ‘pandemic solutions’ to valuable alternatives that provide equitable and scalable access to educational opportunities and proactively invest in their continued sustainability and growth. 
    more » « less
  5. This project focuses on developing three technical courses for lower-division electrical engineering education to bridge the gap between Career and Technical Education (CTE) programs in high schools, engineering programs at community colleges, and lower-division electrical engineering courses at four-year universities. The primary goal of the project is to create a seamless academic transition by providing electrical engineering students with the necessary foundational knowledge in analog and digital systems, as well as hands-on experience with laboratory measurement tools. The courses utilize industry-relevant technologies such as LabView, MATLAB, PLC programming, and ready-to-use microcontroller boards to facilitate experiential learning at lower division courses. Early exposure to these tools and systems equips students with practical skills that not only prepare them for further academic pursuits but also align them with workforce demands in industries that increasingly rely on automation, data acquisition, and real-time system controls. The success of this project is attributed to its emphasis on design and project-based learning, which fosters critical thinking and problem-solving skills essential for real-world applications. By integrating design principles early in students' educational experiences, they are better prepared to tackle complex engineering problems as they progress through their academic careers. The use of project-based learning allows students to apply theoretical knowledge to tangible, real-world projects, improving their engagement and deepening their understanding of electrical engineering concepts. Practical tools like MATLAB and microcontroller boards in entry-level courses not only motivates students to pursue engineering but also increases retention rates in STEM fields, a key metric for academic success. This project is also advocating for early exposure to hands-on technical skills as a way to better prepare students for the workforce. By focusing on skill development in both CTE programs and early college courses, students are equipped with a stronger foundation for electrical engineering careers and are more likely to succeed in upper-division coursework and beyond. The seamless integration of high school, community college, and university programs ensures that students acquire both the theoretical and practical skills necessary to be successful in an increasingly technology-driven economy. Moreover, the project's use of industry-standard tools, coupled with its focus on bridging academic gaps, provides a sustainable model for developing a skilled and versatile workforce, addressing the growing need for engineers proficient in both design and system implementation. 
    more » « less