skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disturbance sensitivity shapes patterns of tree species distribution in Afrotropical lowland rainforests more than climate or soil
Abstract Understanding how tropical forests respond to abiotic environmental changes is critical for preserving biodiversity, mitigating climate change, and maintaining ecosystem services in the coming century. To evaluate the relative roles of the abiotic environment and human disturbance on Central African tree community composition, we employ tree inventory data, remotely sensed climatic data, and soil nutrient data collected from 30 1‐ha plots distributed across a large‐scale observational experiment in forests that had been differently impacted by logging and hunting in northern Republic of Congo. We show that the composition of Afrotropical plant communities at this scale responds to human disturbance more than to climate, with particular sensitivities to hunting and distance to the nearest village (a proxy for other human activities, including tree‐cutting and gathering). These findings contrast neotropical predictions, highlighting the unique ecological, evolutionary, and anthropogenic history of Afrotropical forests.  more » « less
Award ID(s):
2211764
PAR ID:
10504362
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
5
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Anthropogenic disturbances are changing the structure and composition of tropical forests worldwide. Multiple disturbances often occur simultaneously in forests: for example, hunting and logging are within-forest disturbances that impact vast areas of seemingly intact rainforests. Despite recent work on the individual effects of these disturbances, our understanding of how they interact to influence tree communities is still limited. In northern Republic of Congo, we explored the effects of hunting and logging on tree communities. Over an 8-year period, we monitored 12,552 tree stems (≥ 10 cm diameter-at-breast height) spread over 30 1-ha plots along a gradient of human disturbance to compare the tree diversity between hunted and logged forest, once-logged forest, and protected forest free of both disturbances. Tree density, species richness, and community composition were affected by both hunting and logging. Forest close to human settlements was richer, more heterogenous, and more dynamic in species composition across censuses. In hunted and logged forest, fast-growing secondary species with low shade tolerance replaced old growth species. Comparatively, the once-logged forest had the greatest stem density and intermediate species richness with an increased density of shade-bearing species over time. Both tree species spatial turnover and tree recruitment were greatly affected by proximity to human settlements. A shift towards abiotically dispersed trees and increasing seed predation by rodents near villages can partly explain the differences in tree recruitment across the forest types. The combination of hunting and logging seems to have a greater impact on tree communities than either single disturbance, especially with nearness to villages. 
    more » « less
  2. Abstract AimClimate and disturbance alter forest dynamics, from individual trees to biomes and from years to millennia, leaving legacies that vary with local, meso‐ and macroscales. Motivated by recent insights in temperate forests, we argue that temporal and spatial extents equivalent to that of the underlying drivers are necessary to characterize forest dynamics across scales. We focus specifically on characterizing mesoscale forest dynamics because they bridge fine‐scale (local) processes and the continental scale (macrosystems) in ways that are highly relevant for climate change science and ecosystem management. We revisit ecological concepts related to spatial and temporal scales and discuss approaches to gain a better understanding of climate–forest dynamics across scales. LocationEastern USA. Time periodLast century to present. Major taxa studiedTemperate broadleaf forests. MethodsWe review regional literature of past tree mortality studies associated with climate to identify mesoscale climate‐driven disturbance events. Using a dynamic vegetation model, we then simulate how these forests respond to a typical climate‐driven disturbance. ResultsBy identifying compound disturbance events from both a literature review and simulation modelling, we find that synchronous patterns of drought‐driven mortality at mesoscales have been overlooked within these forests. Main conclusionsAs ecologists, land managers and policy‐makers consider the intertwined drivers of climate and disturbance, a focus on spatio‐temporal scales equivalent to those of the drivers will provide insight into long‐term forest change, such as drought impacts. Spatially extensive studies should also have a long temporal scale to provide insight into pathways for forest change, evaluate predictions from dynamic forest models and inform development of global vegetation models. We recommend integrating data collected from spatially well‐replicated networks (e.g., archaeological, historical or palaeoecological data), consisting of centuries‐long, high‐resolution records, with models to characterize better the mesoscale response of forests to climate change in the past and in the future. 
    more » « less
  3. Abstract Background and AimsUnderstanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico. MethodsWe analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016. Key ResultsThe previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time. ConclusionsOur study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions. 
    more » « less
  4. Abstract Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate‐driven disturbances pose critical risks to the long‐term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress‐driven tree mortality, including a separate insect‐driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current risks are widespread and projected to increase across different emissions scenarios by a factor of >4 for fire and >1.3 for climate‐stress mortality. These forest disturbance risks highlight pervasive climate‐sensitive disturbance impacts on US forests and raise questions about the risk management approach taken by forest carbon offset policies. Our results provide US‐wide risk maps of key climate‐sensitive disturbances for improving carbon cycle modeling, conservation and climate policy. 
    more » « less
  5. Abstract Anthropogenic activities have altered historical disturbance regimes, and understanding the mechanisms by which these shifting perturbations interact is essential to predicting where they may erode ecosystem resilience. Emerging infectious plant diseases, caused by human translocation of nonnative pathogens, can generate ecologically damaging forms of novel biotic disturbance. Further, abiotic disturbances, such as wildfire, may influence the severity and extent of disease‐related perturbations via their effects on the occurrence of hosts, pathogens and microclimates; however, these interactions have rarely been examined.The disease ‘sudden oak death’ (SOD), associated with the introduced pathogenPhytophthora ramorum, causes acute, landscape‐scale tree mortality in California's fire‐prone coastal forests. Here, we examined interactions between wildfire and the biotic disturbance impacts of this emerging infectious disease. Leveraging long‐term datasets that describe wildfire occurrence andP. ramorumdynamics across the Big Sur region, we modelled the influence of recent and historical fires on epidemiological parameters, including pathogen presence, infestation intensity, reinvasion, and host mortality.Past wildfire altered disease dynamics and reduced SOD‐related mortality, indicating a negative interaction between these abiotic and biotic disturbances. Frequently burned forests were less likely to be invaded byP. ramorum, had lower incidence of host infection, and exhibited decreased disease‐related biotic disturbance, which was associated with reduced occurrence and density of epidemiologically significant hosts. Following a recent wildfire, survival of mature bay laurel, a key sporulating host, was the primary driver ofP. ramoruminfestation and reinvasion, but younger, rapidly regenerating host vegetation capable of sporulation did not measurably influence disease dynamics. Notably, the effect ofP. ramoruminfection on host mortality was reduced in recently burned areas, indicating that the loss of tall, mature host canopies may temporarily dampen pathogen transmission and ‘release’ susceptible species from significant inoculum pressure.Synthesis. Cumulatively, our findings indicate that fire history has contributed to heterogeneous patterns of biotic disturbance and disease‐related decline across this landscape, via changes to the both the occurrence of available hosts and the demography of epidemiologically important host populations. These results highlight that human‐altered abiotic disturbances may play a foundational role in structuring infectious disease dynamics, contributing to future outbreak emergence and driving biotic disturbance regimes. 
    more » « less