skip to main content


This content will become publicly available on February 27, 2025

Title: Exploring high molecular weight vinyl ester polymers made by PET-RAFT
Polyvinyl esters are used in many applications, however, high molecular weight polyvinyl esters have many challenges, with strategies for the synthesis of these polymers being the focus of this work.  more » « less
Award ID(s):
2203727 1919850
PAR ID:
10504564
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Polymer Chemistry
Volume:
15
Issue:
9
ISSN:
1759-9954
Page Range / eLocation ID:
868 to 877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z‐factor of 0.77. Screening of ethyl acetate production from a combinatorial library of fourKluyveromyces marxianusstrains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties ofK. marxianusmetabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.

     
    more » « less
  2. ABSTRACT

    Internal plasticization of polyvinyl chloride (PVC) using thermal azide‐alkyne Huisgen dipolar cycloaddition between azidized PVC and electron‐poor acetylenediamides incorporating a branched glutamic acid linker resulted in incorporation of four plasticizing moieties per attachment point on the polymer chain. A systematic study incorporating either alkyl or polyethylene glycol esters provided materials with varying degrees of plasticization, with depressedTgvalues ranging from −1 °C to 62 °C. Three interesting trends were observed. First,Tgvalues of PVC bearing various internal plasticizers were shown to decrease with increasing chain length of the plasticizing ester. Second, branched internal plasticizers bearing triethylene glycol chains had lowerTgvalues compared to those with similar length long‐chain alkyl groups. Finally, thermogravimetric analysis of these internally plasticized PVC samples revealed that these branched internal plasticizers bearing alkyl chains are more thermally stable than similarity branched plasticizers bearing triethylene glycol units. These internal tetra‐plasticizers were synthesized and attached to PVC‐azide in three simple synthetic steps. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 1821–1835

     
    more » « less
  3. Although the palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl esters has received significant attention, there is a lack of methods that utilize cheap and readily accessible Pd-phosphane catalysts, and can be routinely carried out with high cross-coupling selectivity. Herein, we report the first general method for the cross-coupling of pentafluorophenyl esters (pentafluorophenyl = pfp) by selective C–O acyl cleavage. The reaction proceeds efficiently using Pd(0)/phosphane catalyst systems. The unique characteristics of pentafluorophenyl esters are reflected in the fully selective cross-coupling vs. phenolic esters. Of broad synthetic interest, this report establishes pentafluorophenyl esters as new, highly reactive, bench-stable, economical, ester-based, electrophilic acylative reagents via acyl-metal intermediates. Mechanistic studies strongly support a unified reactivity scale of acyl electrophiles by C(O)–X (X = N, O) activation. The reactivity of pfp esters can be correlated with barriers to isomerization around the C(acyl)–O bond. 
    more » « less
  4. We describe the use of a supramolecular nano-capsule for selective protection of cis - and trans -C18 mono-unsaturated fatty-acid esters. In contrast to earlier studies revealing that protection of smaller esters is dictated by affinity, protection of these larger esters was found to be dependent on the packing motif of the guest. 
    more » « less
  5. Enzymes have substrate‐tailored active sites with optimized molecular recognition and catalytic features. Although many different platforms have been used by chemists to construct enzyme mimics, it is challenging to tune the structure of their active sites systematically. By molecularly imprinting template molecules within doubly cross‐linked micelles, we created protein‐sized nanoparticles with catalytically functionalized binding sites. These enzyme mimics accelerated the hydrolysis of activated esters thousands of times over the background reaction, whereas the analogous catalytic group (a nucleophilic pyridyl derivative) was completely inactive in bulk solution under the same conditions. The template molecules directly controlled the size and shape of the active site and modulated the resulting catalyst's performance at different pHs. The synthetic catalysts displayed Michaelis–Menten enzymatic behavior and, interestingly, reversed the intrinsic reactivity of the activated esters during the hydrolysis.

     
    more » « less