Abstract Allylation of nucleophiles with highly reactive electrophiles like allyl halides can be conducted without metal catalysts. Less reactive electrophiles, such as allyl esters and carbonates, usually require a transition metal catalyst to facilitate the allylation. Herein, we report a unique transition-metal-free allylation strategy with allyl ether electrophiles. Reaction of a host of allyl ethers with 2-azaallyl anions delivers valuable homoallylic amine derivatives (up to 92%), which are significant in the pharmaceutical industry. Interestingly, no deprotonative isomerization or cyclization of the products were observed. The potential synthetic utility and ease of operation is demonstrated by a gram scale telescoped preparation of a homoallylic amine. In addition, mechanistic studies provide insight into these C(sp 3 )–C(sp 3 ) bond-forming reactions. 
                        more » 
                        « less   
                    This content will become publicly available on June 6, 2026
                            
                            Reaction of Carboxylic Acids and Dehydroalanine Allyl Esters via One‐Pot Sequential Decarboxylative Couplings
                        
                    
    
            Abstract A protocol for the iterative decarboxylative cross‐coupling of carboxylic acids with dehydroalanine (Dha) allyl esters is described. A procedure for decarboxylative Giese addition to dehydroalanine allyl esters that avoids 5‐exo‐trig radical cyclization onto the allyl moiety was developed. This results in complex, substituted alanine allyl esters that are poised for a second decarboxylative coupling. Thus, following the photocatalytic decarboxylative alkylation of Dha, the resulting amino acid allyl esters were subjected to decarboxylative allylation under metallaphotoredox/palladium catalysis. The Giese addition and decarboxylative allylation can be performed in one pot simply by triggering the decarboxylative allylation by addition of a palladium catalyst. These one‐pot decarboxylative couplings leverage temporally controlled carboxylate formation to allow controlled, sequential photoredox activation of the carboxylates. The ability to perform sequential, one‐pot photoredox C─C bond formations obviates the need for isolation of intermediates. The final products of these coupling reactions are densely functionalized homoallylic amines and/or unsymmetric, differentiated 1,3‐diamines, both known for their high synthetic value. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2247708
- PAR ID:
- 10600206
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemCatChem
- Volume:
- 17
- Issue:
- 16
- ISSN:
- 1867-3880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)The cross-coupling of aryl esters has emerged as a powerful platform for the functionalization of otherwise inert acyl C–O bonds in chemical synthesis and catalysis. Herein, we report a combined experimental and computational study on the acyl Suzuki–Miyaura cross-coupling of aryl esters mediated by well-defined, air- and moisture-stable Pd( ii )–NHC precatalysts [Pd(NHC)(μ-Cl)Cl] 2 . We present a comprehensive evaluation of [Pd(NHC)(μ-Cl)Cl] 2 precatalysts and compare them with the present state-of-the-art [(Pd(NHC)allyl] precatalysts bearing allyl-type throw-away ligands. Most importantly, the study reveals [Pd(NHC)(μ-Cl)Cl] 2 as the most reactive precatalysts discovered to date in this reactivity manifold. The unique synthetic utility of this unconventional O–C(O) cross-coupling is highlighted in the late-stage functionalization of pharmaceuticals and sequential chemoselective cross-coupling, providing access to valuable ketone products by a catalytic mechanism involving Pd insertion into the aryl ester bond. Furthermore, we present a comprehensive study of the catalytic cycle by DFT methods. Considering the clear advantages of [Pd(NHC)(μ-Cl)Cl] 2 precatalysts on several levels, including facile one-pot synthesis, superior atom-economic profile to all other Pd( ii )–NHC catalysts, and versatile reactivity, these should be considered as the ‘first-choice’ catalysts for all routine applications in ester O–C(O) bond activation.more » « less
- 
            Copper-catalyzed radical C(sp3)‒N coupling has become a major focus in synthetic catalysis over the past decade. However, achieving this reaction manifold by using enzymes has remained elusive. In this study, we introduce a photobiocatalytic approach for radical benzylic C(sp3)‒N coupling using a copper-substituted nonheme enzyme. Using rhodamine B as a photoredox catalyst, we identified a copper-substituted phenylalanine hydroxylase that facilitates enantioconvergent decarboxylative amination betweenN-hydroxyphthalimide esters and anilines. Directed evolution remodeled the active site, resulting in high enantioselectivities for most substrates. On the basis of molecular modeling and mechanistic studies, we propose that the enzyme accommodates a copper-anilide complex that reacts with a benzylic radical. This study expands the scope of non-natural biocatalytic transition metal catalysis to copper-catalyzed radical coupling.more » « less
- 
            Abstract Since early focus on development of the allylation of non‐stabilized enolates, decarboxylative allylation has undergone tremendous evolution. This account describes the progression of decarboxylative allylation within the Tunge group with a focus on efforts to identify and overcome pKarequirements that initially limited the carboxylates that would undergo decarboxylative allylation.more » « less
- 
            Abstract Cooperative catalysis enables the direct enantioselective α‐allylation of linear prochiral esters with 2‐substituted allyl electrophiles. Critical to the successful development of the method was the recognition that metal‐centered reactivity and the source of enantiocontrol are independent. This feature is unique to simultaneous catalysis events and permits logical tuning of the supporting ligands without compromising enantioselectivity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
