skip to main content


Title: Controlled photodegradation of phenyl vinyl ketone polymers by reinforcement with softer networks
Polymer networks based on phenyl vinyl ketone were synthesized. The introduction of a second network enhanced the control over the material's photodegradation, as well as modulating the mechanical properties.  more » « less
Award ID(s):
2203727 1749730
PAR ID:
10504572
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Polymer Chemistry
Volume:
14
Issue:
36
ISSN:
1759-9954
Page Range / eLocation ID:
4160 to 4168
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cann, Isaac (Ed.)
    ABSTRACT Arsenic (As) metabolism genes are generally present in soils, but their diversity, relative abundance, and transcriptional activity in response to different As concentrations remain unclear, limiting our understanding of the microbial activities that control the fate of an important environmental pollutant. To address this issue, we applied metagenomics and metatranscriptomics to paddy soils showing a gradient of As concentrations to investigate As resistance genes ( ars ) including arsR , acr3 , arsB , arsC , arsM , arsI , arsP , and arsH as well as energy-generating As respiratory oxidation ( aioA ) and reduction ( arrA ) genes. Somewhat unexpectedly, the relative DNA abundances and diversities of ars , aioA , and arrA genes were not significantly different between low and high (∼10 versus ∼100 mg kg −1 ) As soils. Compared to available metagenomes from other soils, geographic distance rather than As levels drove the different compositions of microbial communities. Arsenic significantly increased ars gene abundance only when its concentration was higher than 410 mg kg −1 . In contrast, metatranscriptomics revealed that relative to low-As soils, high-As soils showed a significant increase in transcription of ars and aioA genes, which are induced by arsenite, the dominant As species in paddy soils, but not arrA genes, which are induced by arsenate. These patterns appeared to be community wide as opposed to taxon specific. Collectively, our findings advance understanding of how microbes respond to high As levels and the diversity of As metabolism genes in paddy soils and indicated that future studies of As metabolism in soil or other environments should include the function (transcriptome) level. IMPORTANCE Arsenic (As) is a toxic metalloid pervasively present in the environment. Microorganisms have evolved the capacity to metabolize As, and As metabolism genes are ubiquitously present in the environment even in the absence of high concentrations of As. However, these previous studies were carried out at the DNA level; thus, the activity of the As metabolism genes detected remains essentially speculative. Here, we show that the high As levels in paddy soils increased the transcriptional activity rather than the relative DNA abundance and diversity of As metabolism genes. These findings advance our understanding of how microbes respond to and cope with high As levels and have implications for better monitoring and managing an important toxic metalloid in agricultural soils and possibly other ecosystems. 
    more » « less
  2. Some arsenite [As(III)]-oxidizing bacteria exhibit positive chemotaxis towards As(III), however, the related As(III) chemoreceptor and regulatory mechanism remain unknown. The As(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 displays positive chemotaxis towards 0.5–2 mM As(III). Genomic analyses revealed a putative chemoreceptor-encoding gene, mcp, located in the arsenic gene island and having a predicted promoter binding site for the As(III) oxidation regulator AioR. Expression of mcp and other chemotaxis related genes (cheA, cheY2 and fliG) was inducible by As(III), but not in the aioR mutant. Using capillary assays and intrinsic tryptophan fluorescence spectra analysis, Mcp was confirmed to be responsible for chemotaxis towards As(III) and to bind As(III) (but not As(V) nor phosphate) as part of the sensing mechanism. A bacterial one-hybrid system technique and electrophoretic mobility shift assays showed that AioR interacts with the mcp regulatory region in vivo and in vitro, and the precise AioR binding site was confirmed using DNase I foot-printing. Taken together, these results indicate that this Mcp is responsible for the chemotactic response towards As(III) and is regulated by AioR. Additionally, disrupting the mcp gene affected bacterial As(III) oxidation and growth, inferring that Mcp may exert some sort of functional connection between As(III) oxidation and As(III) chemotaxis. 
    more » « less
  3. In the present study, the removal of both As(III) and As(V) from aqueous solutions using synthesized ZnO nanomaterials was achieved. The ZnO nanomaterial was synthesized using a precipitation technique and characterized using XRD, SEM, and Raman spectroscopy. XRD confirmed the ZnO nanoparticles were present in the hexagonal wurtzite structure. SEM of the particles showed they were aggregates of triangular and spherical particles. The average nanoparticle size was determined to be 62.03 ± 4.06 nm using Scherrer’s analysis of the three largest diffraction peaks. Raman spectroscopy of the ZnO nanoparticles showed only ZnO peaks, whereas the after-reaction samples indicated that As(V) was present in both As(V)- and As(III)-reacted samples. The adsorption of the ions was determined to be pH-independent, and a binding pH of 4 was selected as the pH for reaction. Batch isotherm studies showed the highest binding capacities occurred at 4 °C with 5.83 mg/g and 14.68 mg/g for As(III) and As(V), respectively. Thermodynamic studies indicated an exothermic reaction occurred and the binding of both As(III) and As(VI) took place through chemisorption, which was determined by the ΔH values of −47.29 and −63.4 kJ/mol for As(V) and As(III), respectively. In addition, the change in Gibbs free energy, ΔG, for the reaction confirmed the exothermic nature of the reaction; the spontaneity of the reaction decreased with increasing temperature. Results from batch time dependency studies showed the reaction occurred within the first 60 min of contact time.

     
    more » « less
  4. Budak, Ceren ; Cha, Meeyoung ; Quercia, Daniele ; Xie, Lexing (Ed.)
    Parler is as an ``alternative'' social network promoting itself as a service that allows to ``speak freely and express yourself openly, without fear of being deplatformed for your views.'' Because of this promise, the platform become popular among users who were suspended on mainstream social networks for violating their terms of service, as well as those fearing censorship. In particular, the service was endorsed by several conservative public figures, encouraging people to migrate from traditional social networks. After the storming of the US Capitol on January 6, 2021, Parler has been progressively deplatformed, as its app was removed from Apple/Google Play stores and the website taken down by the hosting provider. This paper presents a dataset of 183M Parler posts made by 4M users between August 2018 and January 2021, as well as metadata from 13.25M user profiles. We also present a basic characterization of the dataset, which shows that the platform has witnessed large influxes of new users after being endorsed by popular figures, as well as a reaction to the 2020 US Presidential Election. We also show that discussion on the platform is dominated by conservative topics, President Trump, as well as conspiracy theories like QAnon. 
    more » « less
  5. Fe3+-cross-linked chitosan exhibits the potential for selectively adsorbing arsenic (As) over competing species, such as phosphate, for water remediation. However, the effective binding mechanisms, bond nature, and controlling factor(s) of the selectivity are poorly understood. This study employs ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to neat chitosan and Fe3+-chitosan. Neat chitosan fails to selectively bind As oxyanions, as all three oxyanions bind similarly via weak hydrogen bonds with preferences of P(V) = As(V) > As(III). Conversely, Fe3+-chitosan selectively binds As(V) over As(III) and P(V) with binding energies of −1.9, −1, and −1.8 eV for As(V), As(III), and P(V), respectively. The preferences are due to varying Fe3+–oxyanion donor–acceptor characteristics, forming covalent bonds with distinct strengths (Fe–O bond ICOHP values: – 4.9 eV/bond for As(V), – 4.7 eV/bond for P(V), and −3.5 eV/bond for As(III)). Differences in pKa between As(V)/P(V) and As(III) preclude any preference for As(III) under typical environmental pH conditions. Furthermore, our calculations suggest that the binding selectivity of Fe3+-chitosan exhibits a pH dependence. These findings enhance our understanding of the Fe3+–oxyanion interaction crucial for preferential oxyanion binding using Fe3+-chitosan and provide a lens for further exploration into alternative transition-metal–chitosan combinations and coordination chemistries for applications in selective separations. 
    more » « less