skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generating the homology of covers of surfaces
Abstract Putman and Wieland conjectured that if is a finite branched cover between closed oriented surfaces of sufficiently high genus, then the orbits of all nonzero elements of under the action of lifts to of mapping classes on are infinite. We prove that this holds if is generated by the homology classes of lifts of simple closed curves on . We also prove that the subspace of spanned by such lifts is a symplectic subspace. Finally, simple closed curves lie on subsurfaces homeomorphic to 2‐holed spheres, and we prove that is generated by the homology classes of lifts of loops on lying on subsurfaces homeomorphic to 3‐holed spheres.  more » « less
Award ID(s):
2153879 2305183
PAR ID:
10504577
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Bulletin of the London Mathematical Society
Volume:
56
Issue:
5
ISSN:
0024-6093
Format(s):
Medium: X Size: p. 1768-1787
Size(s):
p. 1768-1787
Sponsoring Org:
National Science Foundation
More Like this
  1. In this note we make progress toward a conjecture of Durham–Fanoni–Vlamis, showing that every infinite-type surface with fi­ni­te-invariance index \(1\) and no nondisplaceable compact subsurfaces fails to have a good graph of curves, that is, a connected graph where vertices represent homotopy classes of essential simple closed curves and with a natural mapping class group action having infinite diameter orbits. Our arguments use tools developed by Mann–Rafi in their study of the coarse geometry of big mapping class groups. 
    more » « less
  2. ln this paper, a generalized cusp is a properly convex manifold with strictly convex boundary that is diffeomorphic to M × [ 0 , ∞ ) M\times [0,\infty ) where M M is a closed Euclidean manifold. These are classified by Ballas, Cooper, and Leitner [J. Topol. 13 (2020), pp. 1455-1496]. The marked moduli space is homeomorphic to a subspace of the space of conjugacy classes of representations of π 1 M \pi _1M . It has one description as a generalization of a trace-variety, and another description involving weight data that is similar to that used to describe semi-simple Lie groups. It is also a bundle over the space of Euclidean similarity (conformally flat) structures on M M , and the fiber is a closed cone in the space of cubic differentials. For 3 3 -dimensional orientable generalized cusps, the fiber is homeomorphic to a cone on a solid torus. 
    more » « less
  3. The proof of Witten's finiteness conjecture established that the Kauffman bracket skein modules of closed $$3$$-manifolds are finitely generated over $$\Q(A)$$. In this paper, we develop a novel method for computing these skein modules. We show that if the skein module $$S(M,\Q[A^\pmo])$$ of $$M$$ is tame (e.g. finitely generated over $$\Q[A^{\pm 1}]$$), and the $$SL(2, \C)$$-character scheme is reduced, then the dimension $$\dim_{\Q(A)}\, S(M, \Q(A))$$ is the number of closed points in this character scheme. This, in particular, verifies a conjecture in the literature relating $$\dim_{\Q(A)}\, S(M, \Q(A))$$ to the Abouzaid-Manolescu $$SL(2,\C)$$-Floer theoretic invariants, for infinite families of 3-manifolds. We prove a criterion for reducedness of character varieties of closed $$3$$-manifolds and use it to compute the skein modules of Dehn fillings of $(2,2n+1)$-torus knots and of the figure-eight knot. The later family gives the first instance of computations of skein modules for closed hyperbolic 3-manifolds. We also prove that the skein modules of rational homology spheres have dimension at least $$1$$ over $$\Q(A)$$. 
    more » « less
  4. In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word. Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in the size of the input 3-manifold. As part of our proof, we obtain new polynomial-time algorithms for compressed curves on surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm which, given an orientable surface and a compressed loop on the surface, computes a canonical form for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can be decided in polynomial time; prior published work considered only constant genus surfaces. More generally, we solve the following normal subgroup membership problem in polynomial time: given an arbitrary orientable surface, a compressed closed curve, and a collection of disjoint normal curves, there is a polynomial-time algorithm to decide if the curve lies in the normal subgroup generated by components of the normal curves in the fundamental group of the surface after attaching the curves to a basepoint. 
    more » « less
  5. From a handle-theoretic perspective, the simplest contractible 4-manifolds, other than the 4-ball, are Mazur manifolds. We produce the first pairs of Mazur manifolds that are homeomorphic but not diffeomorphic. Our diffeomorphism obstruction comes from our proof that the knot Floer homology concordance invariant ν is an invariant of the trace of a knot, i.e. the smooth 4-manifold obtained by attaching a 2-handle to the 4-ball along K. This provides a computable, integer-valued diffeomorphism invariant that is effective at distinguishing exotic smooth structures on knot traces and other simple 4-manifolds, including when other adjunction-type obstructions are ineffective. We also show that the concordance invariants τ and ϵ are not knot trace invariants. As a corollary to the existence of exotic Mazur manifolds, we produce integer homology 3-spheres admitting two distinct surgeries to $$S^1 \times S^2$$, resolving a question from Problem 1.16 in Kirby's list. 
    more » « less