skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries
In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word. Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in the size of the input 3-manifold. As part of our proof, we obtain new polynomial-time algorithms for compressed curves on surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm which, given an orientable surface and a compressed loop on the surface, computes a canonical form for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can be decided in polynomial time; prior published work considered only constant genus surfaces. More generally, we solve the following normal subgroup membership problem in polynomial time: given an arbitrary orientable surface, a compressed closed curve, and a collection of disjoint normal curves, there is a polynomial-time algorithm to decide if the curve lies in the normal subgroup generated by components of the normal curves in the fundamental group of the surface after attaching the curves to a basepoint.  more » « less
Award ID(s):
2106672
PAR ID:
10506177
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Discrete & Computational Geometry
Volume:
70
Issue:
2
ISSN:
0179-5376
Page Range / eLocation ID:
323 to 354
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given a loop or more generally 1-cycle r r of size L on a closed two-dimensional manifold or surface, represented by a triangulated mesh, a question in computational topology asks whether or not it is homologous to zero. We frame and tackle this problem in the quantum setting. Given an oracle that one can use to query the inclusion of edges on a closed curve, we design a quantum algorithm for such a homology detection with a constant running time, with respect to the size or the number of edges on the loop r r , requiring only a single usage of oracle. In contrast, classical algorithm requires \Omega(L) Ω ( L ) oracle usage, followed by a linear time processing and can be improved to logarithmic by using a parallel algorithm. Our quantum algorithm can be extended to check whether two closed loops belong to the same homology class. Furthermore, it can be applied to a specific problem in the homotopy detection, namely, checking whether two curves are not homotopically equivalent on a closed two-dimensional manifold. 
    more » « less
  2. Morin, Pat; Suri, Subhash (Ed.)
    Let γ be a generic closed curve in the plane. Samuel Blank, in his 1967 Ph.D. thesis, determined if γ is self-overlapping by geometrically constructing a combinatorial word from γ. More recently, Zipei Nie, in an unpublished manuscript, computed the minimum homotopy area of γ by constructing a combinatorial word algebraically. We provide a unified framework for working with both words and determine the settings under which Blank’s word and Nie’s word are equivalent. Using this equivalence, we give a new geometric proof for the correctness of Nie’s algorithm. Unlike previous work, our proof is constructive which allows us to naturally compute the actual homotopy that realizes the minimum area. Furthermore, we contribute to the theory of self-overlapping curves by providing the first polynomial-time algorithm to compute a self-overlapping decomposition of any closed curve γ with minimum area. 
    more » « less
  3. We study the generalization of quasipositive links from the 3-sphere to arbitrary closed, orientable 3-manifolds. Our main result shows that the boundary of any smooth, properly embedded complex curve in a Stein domain is a quasipositive link. This generalizes a result due to Boileau and Orevkov, and it provides the first half of a topological characterization of links in 3-manifolds which bound complex curves in a Stein filling. Our arguments replace pseudoholomorphic curve techniques with a study of characteristic and open book foliations on surfaces in 3- and 4-manifolds. 
    more » « less
  4. We study the atomic embeddability testing problem, which is a common generalization of clustered planarity (c-planarity, for short) and thickenability testing, and present a polynomial time algorithm for this problem, thereby giving the first polynomial time algorithm for c-planarity. C-planarity was introduced in 1995 by Feng, Cohen, and Eades as a variant of graph planarity, in which the vertex set of the input graph is endowed with a hierarchical clustering and we seek an embedding (crossing free drawing) of the graph in the plane that respects the clustering in a certain natural sense. Until now, it has been an open problem whether c-planarity can be tested efficiently, despite relentless efforts. The thickenability problem for simplicial complexes emerged in the topology of manifolds in the 1960s. A 2-dimensional simplicial complex is thickenable if it embeds in some orientable 3-dimensional manifold. Recently, Carmesin announced that thickenability can be tested in polynomial time. Our algorithm for atomic embeddability combines ideas from Carmesin's work with algorithmic tools previously developed for weak embeddability testing. We express our results purely in terms of graphs on surfaces, and rely on the machinery of topological graph theory. Finally we give a polynomial-time reduction from c-planarity to thickenability and show that a slight generalization of atomic embeddability to the setting in which clusters are toroidal graphs is NP-complete. 
    more » « less
  5. We study the atomic embeddability testing problem, which is a common generalization of clustered planarity ( c-planarity , for short) and thickenability testing, and present a polynomial-time algorithm for this problem, thereby giving the first polynomial-time algorithm for c-planarity. C-planarity was introduced in 1995 by Feng, Cohen, and Eades as a variant of graph planarity, in which the vertex set of the input graph is endowed with a hierarchical clustering and we seek an embedding (crossing free drawing) of the graph in the plane that respects the clustering in a certain natural sense. Until now, it has been an open problem whether c-planarity can be tested efficiently. The thickenability problem for simplicial complexes emerged in the topology of manifolds in the 1960s. A 2-dimensional simplicial complex is thickenable if it embeds in some orientable 3-dimensional manifold. Recently, Carmesin announced that thickenability can be tested in polynomial time. Our algorithm for atomic embeddability combines ideas from Carmesin’s work with algorithmic tools previously developed for weak embeddability testing. We express our results purely in terms of graphs on surfaces, and rely on the machinery of topological graph theory. Finally, we give a polynomial-time reduction from atomic embeddability to thickenability thereby showing that both problems are polynomially equivalent, and show that a slight generalization of atomic embeddability to the setting in which clusters are toroidal graphs is NP-complete. 
    more » « less