skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnon-photon coupling in an opto-electro-magnonic oscillator
Abstract The opto-electronic oscillators (OEOs) hosting self-sustained oscillations by a time-delayed mechanism are of particular interest in long-haul signal transmission and processing. On the other hand, owing to their unique tunability and compatibility, magnons—as elementary excitations of spin waves—are advantageous carriers for coherent signal transduction across different platforms. In this work, we integrated an opto-electronic oscillator with a magnonic oscillator consisting of a microwave waveguide and a yttrium iron garnet sphere. We find that, in the presence of the magnetic sphere, the oscillator power spectrum exhibits sidebands flanking the fundamental OEO modes. The measured waveguide transmission reveals anti-crossing gaps, a hallmark of the coupling between the opto-electronic oscillator modes and the Walker modes of the sphere. Experimental results are well reproduced by a coupled-mode theory that accounts for nonlinear magnetostrictive interactions mediated by the magnetic sphere. Leveraging the advanced fiber-optic technologies in opto-electronics, this work lays out a new, hybrid platform for investigating long-distance coupling and nonlinearity in coherent magnonic phenomena.  more » « less
Award ID(s):
2144086 2246254
PAR ID:
10504672
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Spintronics
Volume:
2
Issue:
1
ISSN:
2948-2119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hybrid magnonic systems are a newcomer for pursuing coherent information processing owing to their rich quantum engineering functionalities. One prototypical example is hybrid magnonics in antiferromagnets with an easy-plane anisotropy that resembles a quantum-mechanically mixed two-level spin system through the coupling of acoustic and optical magnons. Generally, the coupling between these orthogonal modes is forbidden due to their opposite parity. Here we show that the Dzyaloshinskii–Moriya-Interaction (DMI), a chiral antisymmetric interaction that occurs in magnetic systems with low symmetry, can lift this restriction. We report that layered hybrid perovskite antiferromagnets with an interlayer DMI can lead to a strong intrinsic magnon-magnon coupling strength up to 0.24 GHz, which is four times greater than the dissipation rates of the acoustic/optical modes. Our work shows that the DMI in these hybrid antiferromagnets holds promise for leveraging magnon-magnon coupling by harnessing symmetry breaking in a highly tunable, solution-processable layered magnetic platform. 
    more » « less
  2. Advances in mid-IR lasers, detectors, and nanofabrication technology have enabled new device architectures to implement on-chip sensing applications. In particular, direct integration of plasmonic resonators with a dielectric waveguide can generate an ultra-compact device architecture for biochemical sensing via surface-enhanced infrared absorption (SEIRA) spectroscopy. A theoretical investigation of such a hybrid architecture is imperative for its optimization. In this work, we investigate the coupling mechanism between a plasmonic resonator array and a waveguide using temporal coupled-mode theory and numerical simulation. The results conclude that the waveguide transmission extinction ratio reaches maxima when the resonator-waveguide coupling rate is maximal. Moreover, after introducing a model analyte in the form of an oscillator coupled with the plasmonics-waveguide system, the transmission curve with analyte absorption can be fitted successfully. We conclude that the extracted sensing signal can be maximized when analyte absorption frequency is the same as the transmission minima, which is different from the plasmonic resonance frequency. This conclusion is in contrast to the dielectric resonator scenario and provides an important guideline for design optimization and sensitivity improvement of future devices. 
    more » « less
  3. We demonstrate a widely spaced, stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. Using an ultra-stable Fabry-Perot etalon as a stable reference, we simultaneously stabilize a CW laser and generate a low noise and stable RF oscillation used to drive an electro-optic comb. In such a manner, the Fabry-Perot etalon pins both the carrier-envelope-offset frequency (fceo) and the repetition rate of the comb in place (frep), eliminating the need for an external RF oscillator. Usage of the ultra-stable Fabry-Perot etalon as both an optical and RF reference allows the removal of an external RF oscillator. Additionally, we determined the key parameters in producing high contrast ultrashort pulses necessary for coherent octave spanning supercontinuum generation using long and weak pulses associated with electro-optic modulator based combs. By using a monolithically fiber based pulse compression scheme, we produced ultrashort pulses to facilitate measuring the carrier-envelope-offset frequency, allowing for the first self-starting, self-stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. 
    more » « less
  4. Abstract While being electrically insulating, magnetic insulators can behave as good spin conductors by carrying spin current with excited spin waves. So far, magnetic insulators are utilized in multilayer heterostructures for optimizing spin transport or to form magnon spin valves for reaching controls over the spin flow. In these studies, it remains an intensively visited topic as to what the corresponding roles of coherent and incoherent magnons are in the spin transmission. Meanwhile, understanding the underlying mechanism associated with spin transmission in insulators can help to identify new mechanisms that can further improve the spin transport efficiency. Here, by studying spin transport in a magnetic‐metal/magnetic‐insulator/platinum multilayer, it is demonstrated that coherent magnons can transfer spins efficiently above the magnon bandgap of magnetic insulators. Particularly the standing spin‐wave mode can greatly enhance the spin flow by inducing a resonant magnon transmission. Furthermore, within the magnon bandgap, a shutdown of spin transmission due to the blocking of coherent magnons is observed. The demonstrated magnon transmission enhancement and filtering effect provides an efficient method for modulating spin current in magnonic devices. 
    more » « less
  5. Abstract A cavity‐magnonic system composed of a superconducting microwave resonator coupled to a magnon mode hosted by the organic‐based ferrimagnet vanadium tetracyanoethylene (V[TCNE]x) is demonstrated. This work is motivated by the challenge of scalably integrating a low‐damping magnetic system with planar superconducting circuits. V[TCNE]xhas ultra‐low intrinsic damping, can be grown at low processing temperatures on arbitrary substrates, and can be patterned via electron beam lithography. The devices operate in the strong coupling regime, with a cooperativity exceeding 1000 for coupling between the Kittel mode and the resonator mode at T≈0.4 K, suitable for scalable quantum circuit integration. Higher‐order magnon modes are also observed with much narrower linewidths than the Kittel mode. This work paves the way for high‐cooperativity hybrid quantum devices in which magnonic circuits can be designed and fabricated as easily as electrical wires. 
    more » « less