skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-oscillating, self-stabilizing, and self-referenced electro-optic comb
We demonstrate a widely spaced, stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. Using an ultra-stable Fabry-Perot etalon as a stable reference, we simultaneously stabilize a CW laser and generate a low noise and stable RF oscillation used to drive an electro-optic comb. In such a manner, the Fabry-Perot etalon pins both the carrier-envelope-offset frequency (fceo) and the repetition rate of the comb in place (frep), eliminating the need for an external RF oscillator. Usage of the ultra-stable Fabry-Perot etalon as both an optical and RF reference allows the removal of an external RF oscillator. Additionally, we determined the key parameters in producing high contrast ultrashort pulses necessary for coherent octave spanning supercontinuum generation using long and weak pulses associated with electro-optic modulator based combs. By using a monolithically fiber based pulse compression scheme, we produced ultrashort pulses to facilitate measuring the carrier-envelope-offset frequency, allowing for the first self-starting, self-stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb.  more » « less
Award ID(s):
2052701
PAR ID:
10567752
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
33
Issue:
2
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 3429
Size(s):
Article No. 3429
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dissipative Kerr solitons from optical microresonators, commonly referred to as soliton microcombs, have been developed for a broad range of applications, including precision measurement, optical frequency synthesis, and ultra-stable microwave and millimeter wave generation, all on a chip. An important goal for microcombs is self-referencing, which requires octave-spanning bandwidths to detect and stabilize the comb carrier envelope offset frequency. Further, detection and locking of the comb spacings are often achieved using frequency division by electro-optic modulation. The thin-film lithium niobate photonic platform, with its low loss, strong second- and third-order nonlinearities, as well as large Pockels effect, is ideally suited for these tasks. However, octave-spanning soliton microcombs are challenging to demonstrate on this platform, largely complicated by strong Raman effects hindering reliable fabrication of soliton devices. Here, we demonstrate entirely connected and octave-spanning soliton microcombs on thin-film lithium niobate. With appropriate control over microresonator free spectral range and dissipation spectrum, we show that soliton-inhibiting Raman effects are suppressed, and soliton devices are fabricated with near-unity yield. Our work offers an unambiguous method for soliton generation on strongly Raman-active materials. Further, it anticipates monolithically integrated, self-referenced frequency standards in conjunction with established technologies, such as periodically poled waveguides and electro-optic modulators, on thin-film lithium niobate. 
    more » « less
  2. Electro-optical modulation of a continuous wave laser is a highly stable way to generate frequency combs, gaining popularity in telecommunication and spectroscopic applications. These combs are generated by modulating non-linear electro-optic crystals with radio frequencies, creating equally spaced side-bands centered around the single-frequency seed laser. Electro-optic frequency comb architectures often choose between optical bandwidth (cascaded GHz combs) or higher mode density (chirped RF generation). This work demonstrates an electro-optic frequency comb with > 120 GHz of bandwidth and an 80 MHz repetition rate. The comb has three cascaded electro-optic modulators driven at sequentially lower harmonics, the last megahertz modulation dictating the repetition rate. This architecture can modulate at any individual harmonic and repetition rate without changes to the components. This comb can be used in any applications where a stable and tunable repetition rate is needed. 
    more » « less
  3. We have developed a mid-infrared Doppler-free saturation absorption spectroscopy apparatus that employs a commercial continuous-wave optical parametric oscillator (CW OPO), complemented by a home-built automation and wavelength scanning system. Here, we report a comprehensive spectral scan of the Q branch transitions of theν3 = 1 band of methane (CH4) with an average linewidth (FWHM) of 4.5 MHz. The absolute frequency calibration was achieved using previously reported transition frequencies determined using optical frequency combs, while a Fabry–Perot etalon was used for the relative frequency calibration. We report 15 transitions with improved accuracies of 1.13 MHz (3.76 × 10−5 cm−1). 
    more » « less
  4. A resonant electro-optic (EO) frequency comb is generated through electro-optic modulation of laser light within an optical resonator. Compared to cavity-less EO combs generated in a single pass through a modulator, resonant EO combs can produce broader spectra with lower radio frequency (RF) power and offer a measure of noise filtering beyond the cavity’s linewidth. Understanding, measuring, and suppressing the sources of phase noise in resonant EO combs is crucial for their applications in metrology, astrophotonics, optical clock generation, and fiber-optic communication. According to the standard phase noise model of frequency combs, only two variables—the common mode offset and repetition rate phase noise—are needed to fully describe the phase noise of comb lines. However, in this work, we demonstrate analytically, numerically, and experimentally that this standard model breaks down for resonant EO combs at short timescales (high frequencies) and under certain comb parameters. Specifically, a third phase noise component emerges. Consequently, resonant EO combs feature qualitatively different phase noise from their cavity-less counterparts and may not exhibit the anticipated noise filtering. A more complete description of the deviations from the standard phase noise model is critical to accurately predict the performance of frequency combs. The description presented here provides foundational insights for improved designs tailored to applications such as supercontinuum generation and optical communication. 
    more » « less
  5. Electro-optic (EO) transduction of weak radio frequency (RF) and millimeter-wave signals, such as those received by an antenna, onto laser sidebands for processing in the optical domain requires efficient EO modulators. Microrings offer spatial density and efficiency advantages over Mach–Zehnder modulators (MZMs), but conventional single-ring modulators suffer a fundamental trade-off between resonantly enhanced conversion efficiency and the RF carrier frequency that it can accommodate. Dual-cavity “photonic molecule” modulators resolve this trade-off, allowing high efficiency independent of the RF carrier frequency by providing separate resonant supermodes to enhance the laser local oscillator (LO) and the narrowband RF-detuned sideband. However, the RF frequency is fixed at design time by geometry, with efficiency dropping quickly for RF carriers away from the design value. We propose a novel, to the best of our knowledge, triple-cavity configuration with an off-resonant middle ring acting as an effective tunable coupler between two active modulator cavities. This configuration provides wideband tunability of the target RF carrier while maintaining efficient sideband conversion. When the middle ring is passive (highQ), this configuration provides wide RF tunability with no efficiency penalty over the fixed dual-cavity case and could become an important building block for future RF/mm-wave photonic integrated circuits (PICs). 
    more » « less