skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Completeness and Geodesic Distance Properties for Fractional Sobolev Metrics on Spaces of Immersed Curves
Abstract

We investigate the geometry of the space of immersed closed curves equipped with reparametrization-invariant Riemannian metrics; the metrics we consider are Sobolev metrics of possible fractional-order$$q\in [0,\infty )$$q[0,). We establish the critical Sobolev index on the metric for several key geometric properties. Our first main result shows that the Riemannian metric induces a metric space structure if and only if$$q>1/2$$q>1/2. Our second main result shows that the metric is geodesically complete (i.e., the geodesic equation is globally well posed) if$$q>3/2$$q>3/2, whereas if$$q<3/2$$q<3/2then finite-time blowup may occur. The geodesic completeness for$$q>3/2$$q>3/2is obtained by proving metric completeness of the space of$$H^q$$Hq-immersed curves with the distance induced by the Riemannian metric.

 
more » « less
NSF-PAR ID:
10504705
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The Journal of Geometric Analysis
Volume:
34
Issue:
7
ISSN:
1050-6926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We introduce a family of Finsler metrics, called the$$L^p$$Lp-Fisher–Rao metrics$$F_p$$Fp, for$$p\in (1,\infty )$$p(1,), which generalizes the classical Fisher–Rao metric$$F_2$$F2, both on the space of densities$${\text {Dens}}_+(M)$$Dens+(M)and probability densities$${\text {Prob}}(M)$$Prob(M). We then study their relations to the Amari–C̆encov$$\alpha $$α-connections$$\nabla ^{(\alpha )}$$(α)from information geometry: on$${\text {Dens}}_+(M)$$Dens+(M), the geodesic equations of$$F_p$$Fpand$$\nabla ^{(\alpha )}$$(α)coincide, for$$p = 2/(1-\alpha )$$p=2/(1-α). Both are pullbacks of canonical constructions on$$L^p(M)$$Lp(M), in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$\alpha $$α-geodesics as being energy minimizing curves. On$${\text {Prob}}(M)$$Prob(M), the$$F_p$$Fpand$$\nabla ^{(\alpha )}$$(α)geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$L^p(M)$$Lp(M), but in this case they no longer coincide unless$$p=2$$p=2. Using this transformation, we solve the geodesic equation of the$$\alpha $$α-connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$F_p$$Fp, and study their relation to$$\nabla ^{(\alpha )}$$(α).

     
    more » « less
  2. Abstract

    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ρ0meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$μ+and$$ \mu ^{-}$$μ-beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$c2$$< W<$$<W<17.0 GeV/$$c^2$$c2, 1.0 (GeV/c)$$^2$$2$$< Q^2<$$<Q2<10.0 (GeV/c)$$^2$$2and 0.01 (GeV/c)$$^2$$2$$< p_{\textrm{T}}^2<$$<pT2<0.5 (GeV/c)$$^2$$2. Here,Wdenotes the mass of the final hadronic system,$$Q^2$$Q2the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$pTthe transverse momentum of the$$\rho ^0$$ρ0meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$γTVL) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ρ0production.

     
    more » « less
  3. Abstract

    A well-known open problem of Meir and Moser asks if the squares of sidelength 1/nfor$$n\ge 2$$n2can be packed perfectly into a rectangle of area$$\sum _{n=2}^\infty n^{-2}=\pi ^2/6-1$$n=2n-2=π2/6-1. In this paper we show that for any$$1/21/2<t<1, and any$$n_0$$n0that is sufficiently large depending on t, the squares of sidelength$$n^{-t}$$n-tfor$$n\ge n_0$$nn0can be packed perfectly into a square of area$$\sum _{n=n_0}^\infty n^{-2t}$$n=n0n-2t. This was previously known (if one packs a rectangle instead of a square) for$$1/21/2<t2/3(in which case one can take$$n_0=1$$n0=1).

     
    more » « less
  4. Abstract

    We consider integral area-minimizing 2-dimensional currents$T$Tin$U\subset \mathbf {R}^{2+n}$UR2+nwith$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$T=QΓ, where$Q\in \mathbf {N} \setminus \{0\}$QN{0}and$\Gamma $Γis sufficiently smooth. We prove that, if$q\in \Gamma $qΓis a point where the density of$T$Tis strictly below$\frac{Q+1}{2}$Q+12, then the current is regular at$q$q. The regularity is understood in the following sense: there is a neighborhood of$q$qin which$T$Tconsists of a finite number of regular minimal submanifolds meeting transversally at$\Gamma $Γ(and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$Q=1$Q=1. As a corollary, if$\Omega \subset \mathbf {R}^{2+n}$ΩR2+nis a bounded uniformly convex set and$\Gamma \subset \partial \Omega $ΓΩa smooth 1-dimensional closed submanifold, then any area-minimizing current$T$Twith$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$T=QΓis regular in a neighborhood of $\Gamma $Γ.

     
    more » « less
  5. Abstract

    The electricE1 and magneticM1 dipole responses of the$$N=Z$$N=Znucleus$$^{24}$$24Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$24Mg($$\gamma ,\gamma ^{\prime }$$γ,γ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$J^{\pi }=1^-$$Jπ=1-, four$$J^{\pi }=1^+$$Jπ=1+, and six$$J^{\pi }=2^+$$Jπ=2+states in$$^{24}$$24Mg. De-excitation$$\gamma $$γrays were detected using the four high-purity germanium detectors of the$$\gamma $$γELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$B(M1)=2.7(3)μN2is observed, but this$$N=Z$$N=Znucleus exhibits only marginalE1 strength of less than$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$B(E1)0.61×10-3 e$$^2 \, $$2fm$$^2$$2. The$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$B(Π1,1iπ21+)/B(Π1,1iπ0gs+)branching ratios in combination with the expected results from the Alaga rules demonstrate thatKis a good approximative quantum number for$$^{24}$$24Mg. The use of the known$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ρ2(E0,02+0gs+)strength and the measured$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$B(M1,1+02+)/B(M1,1+0gs+)branching ratio of the 10.712 MeV$$1^+$$1+level allows, in a two-state mixing model, an extraction of the difference$$\varDelta \beta _2^2$$Δβ22between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$0^+_2$$02+level.

     
    more » « less