We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gatelevel error with probability close to one. We model noise by adding a pair of weak, unital, singlequbit noise channels after each twoqubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution
We introduce a family of Finsler metrics, called the
 NSFPAR ID:
 10490304
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 Calculus of Variations and Partial Differential Equations
 Volume:
 63
 Issue:
 2
 ISSN:
 09442669
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract and the corresponding noiseless output distribution$$p_{\text {noisy}}$$ ${p}_{\text{noisy}}$ shrink exponentially with the expected number of gatelevel errors. Specifically, the linear crossentropy benchmark$$p_{\text {ideal}}$$ ${p}_{\text{ideal}}$F that measures this correlation behaves as , where$$F=\text {exp}(2s\epsilon \pm O(s\epsilon ^2))$$ $F=\text{exp}(2s\u03f5\pm O\left(s{\u03f5}^{2}\right))$ is the probability of error per circuit location and$$\epsilon $$ $\u03f5$s is the number of twoqubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution and the uniform distribution$$p_{\text {noisy}}$$ ${p}_{\text{noisy}}$ decays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {unif}}$$ ${p}_{\text{unif}}$ . In other words, although at least one local error occurs with probability$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1F)p_{\text {unif}}$$ ${p}_{\text{noisy}}\approx F{p}_{\text{ideal}}+(1F){p}_{\text{unif}}$ , the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$1F$$ $1F$ . Thus, the “whitenoise approximation” is meaningful when$$O(F\epsilon \sqrt{s})$$ $O\left(F\u03f5\sqrt{s}\right)$ , a quadratically weaker condition than the$$\epsilon \sqrt{s} \ll 1$$ $\u03f5\sqrt{s}\ll 1$ requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$\epsilon s\ll 1$$ $\u03f5s\ll 1$ , which corresponds to only$$s \ge \Omega (n\log (n))$$ $s\ge \Omega (nlog(n\left)\right)$logarithmic depth circuits, and if, additionally, the inverse error rate satisfies , which is needed to ensure errors are scrambled faster than$$\epsilon ^{1} \ge {\tilde{\Omega }}(n)$$ ${\u03f5}^{1}\ge \stackrel{~}{\Omega}\left(n\right)$F decays. The whitenoise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexitytheoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from secondmoment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds. 
Abstract The elliptic flow
of$$(v_2)$$ $\left({v}_{2}\right)$ mesons from beautyhadron decays (nonprompt$${\textrm{D}}^{0}$$ ${\text{D}}^{0}$ was measured in midcentral (30–50%) Pb–Pb collisions at a centreofmass energy per nucleon pair$${\textrm{D}}^{0})$$ ${\text{D}}^{0})$ TeV with the ALICE detector at the LHC. The$$\sqrt{s_{\textrm{NN}}} = 5.02$$ $\sqrt{{s}_{\text{NN}}}=5.02$ mesons were reconstructed at midrapidity$${\textrm{D}}^{0}$$ ${\text{D}}^{0}$ from their hadronic decay$$(y<0.8)$$ $\left(\righty<0.8)$ , in the transverse momentum interval$$\mathrm {D^0 \rightarrow K^\uppi ^+}$$ ${D}^{0}\to {K}^{}{\pi}^{+}$ GeV/$$2< p_{\textrm{T}} < 12$$ $2<{p}_{\text{T}}<12$c . The result indicates a positive for nonprompt$$v_2$$ ${v}_{2}$ mesons with a significance of 2.7$${{\textrm{D}}^{0}}$$ ${\text{D}}^{0}$ . The nonprompt$$\sigma $$ $\sigma $ meson$${{\textrm{D}}^{0}}$$ ${\text{D}}^{0}$ is lower than that of prompt nonstrange D mesons with 3.2$$v_2$$ ${v}_{2}$ significance in$$\sigma $$ $\sigma $ , and compatible with the$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ $2<{p}_{\text{T}}<8\phantom{\rule{0ex}{0ex}}\text{GeV}/c$ of beautydecay electrons. Theoretical calculations of beautyquark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.$$v_2$$ ${v}_{2}$ 
Abstract We construct the extension of the curvilinear summation for bounded Borel measurable sets to the
space for multiple power parameter$$L_p$$ ${L}_{p}$ when$$\bar{\alpha }=(\alpha _1, \ldots , \alpha _{n+1})$$ $\overline{\alpha}=({\alpha}_{1},\dots ,{\alpha}_{n+1})$ . Based on this$$p>0$$ $p>0$ curvilinear summation for sets and the concept of$$L_{p,\bar{\alpha }}$$ ${L}_{p,\overline{\alpha}}$compression of sets, the curvilinearBrunn–Minkowski inequality for bounded Borel measurable sets and its normalized version are established. Furthermore, by utilizing the hypographs for functions, we enact a brand new proof of$$L_{p,\bar{\alpha }}$$ ${L}_{p,\overline{\alpha}}$ Borell–Brascamp–Lieb inequality, as well as its normalized version, for functions containing the special case of the$$L_{p,\bar{\alpha }}$$ ${L}_{p,\overline{\alpha}}$ Borell–Brascamp–Lieb inequality through the$$L_{p}$$ ${L}_{p}$ curvilinearBrunn–Minkowski inequality for sets. Moreover, we propose the multiple power$$L_{p,\bar{\alpha }}$$ ${L}_{p,\overline{\alpha}}$ supremalconvolution for two functions together with its properties. Last but not least, we introduce the definition of the surface area originated from the variation formula of measure in terms of the$$L_{p,\bar{\alpha }}$$ ${L}_{p,\overline{\alpha}}$ curvilinear summation for sets as well as$$L_{p,\bar{\alpha }}$$ ${L}_{p,\overline{\alpha}}$ supremalconvolution for functions together with their corresponding Minkowski type inequalities and isoperimetric inequalities for$$L_{p,\bar{\alpha }}$$ ${L}_{p,\overline{\alpha}}$ etc.$$p\ge 1,$$ $p\ge 1,$ 
Abstract The double differential cross sections of the Drell–Yan lepton pair (
, dielectron or dimuon) production are measured as functions of the invariant mass$$\ell ^+\ell ^$$ ${\ell}^{+}{\ell}^{}$ , transverse momentum$$m_{\ell \ell }$$ ${m}_{\ell \ell}$ , and$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ . The$$\varphi ^{*}_{\eta }$$ ${\phi}_{\eta}^{\ast}$ observable, derived from angular measurements of the leptons and highly correlated with$$\varphi ^{*}_{\eta }$$ ${\phi}_{\eta}^{\ast}$ , is used to probe the low$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ region in a complementary way. Dilepton masses up to 1$$p_{\textrm{T}} (\ell \ell )$$ ${p}_{\text{T}}\left(\ell \ell \right)$ are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$\,\text {Te\hspace{.08em}V}$$ $\phantom{\rule{0ex}{0ex}}\text{Te}\phantom{\rule{0ex}{0ex}}\text{V}$ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$m_{\ell \ell }$$ ${m}_{\ell \ell}$ of proton–proton collisions recorded with the CMS detector at the LHC at a centreofmass energy of 13$$\,\text {fb}^{1}$$ $\phantom{\rule{0ex}{0ex}}{\text{fb}}^{1}$ . Measurements are compared with predictions based on perturbative quantum chromodynamics, including softgluon resummation.$$\,\text {Te\hspace{.08em}V}$$ $\phantom{\rule{0ex}{0ex}}\text{Te}\phantom{\rule{0ex}{0ex}}\text{V}$ 
Abstract We present the first unquenched latticeQCD calculation of the form factors for the decay
at nonzero recoil. Our analysis includes 15 MILC ensembles with$$B\rightarrow D^*\ell \nu $$ $B\to {D}^{\ast}\ell \nu $ flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$N_f=2+1$$ ${N}_{f}=2+1$ fm down to 0.045 fm, while the ratio between the light and the strangequark masses ranges from 0.05 to 0.4. The valence$$a\approx 0.15$$ $a\approx 0.15$b andc quarks are treated using the Wilsonclover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavylight meson chiral perturbation theory. Then we apply a modelindependent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint latticeQCD/experiment fit using several experimental datasets to determine the CKM matrix element . We obtain$$V_{cb}$$ ${V}_{\mathrm{cb}}$ . The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\left V_{cb}\right = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{3}$$ $\left({V}_{\mathrm{cb}}\right)=(38.40\pm 0.{68}_{\text{th}}\pm 0.{34}_{\text{exp}}\pm 0.{18}_{\text{EM}})\times {10}^{3}$ , which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict$$\chi ^2\text {/dof} = 126/84$$ ${\chi}^{2}\text{/dof}=126/84$ , which confirms the current tension between theory and experiment.$$R(D^*) = 0.265 \pm 0.013$$ $R\left({D}^{\ast}\right)=0.265\pm 0.013$