skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved 30‐m Evapotranspiration Estimates Over 145 Eddy Covariance Sites in the Contiguous United States: The Role of ECOSTRESS, Harmonized Landsat Sentinel‐2 Imagery, Climate Reanalysis, and Deep Neural Network Postprocessing
Abstract This study developed and evaluated 30‐m daily evapotranspiration (ET) estimates using the Priestley‐Taylor Jet Propulsion Laboratory (PT‐JPL) model with ECOSTRESS, Moderate MODIS, harmonized Landsat Sentinel‐2 (HLS) imagery, ERA5‐Land reanalysis, and eddy covariance measurements. The new daily 30‐m ET showed significantly improved performance (overall,r = 0.8, RMSE = 1.736, KGE = 0.466) at 145 EC sites over contiguous United States compared to the current 70‐m ECOSTRESS ET (overall,r = 0.485, RMSE = 4.696, KGE = −0.841). A deep neural network postprocessing model trained with ET measurements from EC sites further improved the performance on test sites that were not used for model training (overall,r = 0.842, RMSE = 0.88, KGE = 0.792). The 30‐m ET estimation biases were significantly related to the biases in the upwelling longwave (RUL) and downwelling shortwave radiation (RDS) inputs, with ET estimates driven by MODIS radiation showing higher biases compared to those driven by ERA5‐Land radiation. The error diagnosis using random forest indicates that ET biases tend to be larger under higher ET estimates, andRULandRDSwere the primary contributors to the high bias at the higher ET ranges, with partial dependence plots revealing that the estimation biases tend to be higher under more humid environment, denser vegetation covers, and high net radiation conditions. In conclusion, higher spatial resolution satellite imagery of vegetation characteristics and higher temporal resolution radiation data, combined with continent‐wide EC measurements and deep learning, provided substantial added value for improving ET estimations at the field scale (30‐m).  more » « less
Award ID(s):
2144293
PAR ID:
10504759
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
60
Issue:
4
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the benefits of training a process-based, land surface model is the capacity to use it in ungauged sites as a complement to standard weather stations for predicting energy fluxes, evapotranspiration, and surface and root-zone soil temperature and moisture. In this study, dynamic (i.e., time-evolving) vegetation parameters were derived from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and coupled with a physics-based land surface model (tin-based Real-time Integrated Basin Simulator (tRIBS)) at four eddy covariance (EC) sites in south-central U.S. to test the predictability of micro-meteorological, soil-related, and energy flux-related variables. One cropland and one grassland EC site in northern Oklahoma, USA, were used to tune the model with respect to energy fluxes, soil temperature, and moisture. Calibrated model parameters, mostly related to the soil, were then transferred to two other EC sites in Oklahoma with similar soil and vegetation types. New dynamic vegetation parameter time series were updated according to MODIS imagery at each site. Overall, the tRIBS model captured both seasonal and diurnal cycles of the energy partitioning and soil temperatures across all four stations, as indicated by the model assessment metrics, although large uncertainties appeared in the prediction of ground heat flux, surface, and root-zone soil moisture at some stations. The transferability of previously calibrated model parameters and the use of MODIS to derive dynamic vegetation parameters enabled rapid yet reasonable predictions. The model was proven to be a convenient complement to standard weather stations particularly for sites where eddy covariance or similar equipment is not available. 
    more » « less
  2. Sugarcane croplands account for ~70% of global sugar production and ~60% of global ethanol production. Monitoring and predicting gross primary production (GPP) and transpiration (T) in these fields is crucial to improve crop yield estimation and management. While moderate-spatial-resolution (MSR, hundreds of meters) satellite images have been employed in several models to estimate GPP and T, the potential of high-spatial-resolution (HSR, tens of meters) imagery has been considered in only a few publications, and it is underexplored in sugarcane fields. Our study evaluated the efficacy of MSR and HSR satellite images in predicting daily GPP and T for sugarcane plantations at two sites equipped with eddy flux towers: Louisiana, USA (subtropical climate) and Sao Paulo, Brazil (tropical climate). We employed the Vegetation Photosynthesis Model (VPM) and Vegetation Transpiration Model (VTM) with C4 photosynthesis pathway, integrating vegetation index data derived from satellite images and on-ground weather data, to calculate daily GPP and T. The seasonal dynamics of vegetation indices from both MSR images (MODIS sensor, 500 m) and HSR images (Landsat, 30 m; Sentinel-2, 10 m) tracked well with the GPP seasonality from the EC flux towers. The enhanced vegetation index (EVI) from the HSR images had a stronger correlation with the tower-based GPP. Our findings underscored the potential of HSR imagery for estimating GPP and T in smaller sugarcane plantations. 
    more » « less
  3. Abstract Surface‐atmosphere fluxes and their drivers vary across space and time. A growing area of interest is in downscaling, localizing, and/or resolving sub‐grid scale energy, water, and carbon fluxes and drivers. Existing downscaling methods require inputs of land surface properties at relatively high spatial (e.g., sub‐kilometer) and temporal (e.g., hourly) resolutions, but many observed land surface drivers are not continuously available at these resolutions. We evaluate an approach to overcome this challenge for land surface temperature (LST), a World Meteorological Organization Essential Climate Variable and a key driver for surface heat fluxes. The Chequamegon Heterogenous Ecosystem Energy‐balance Study Enabled by a High‐density Extensive Array of Detectors (CHEESEHEAD19) field experiment provided a scalable testbed. We downscaled LST from satellites (GOES‐16 and ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station [ECOSTRESS]) with further refinement using airborne hyperspectral imagery. Temporally and spatially downscaled LST compared well to independent observations from a network of 20 micrometeorological towers and piloted aircrafts in addition to Landsat‐based LST retrieval and drone‐based LST observed at one tower site. The downscaled 50‐m hourly LST showed good relationships with tower (r2 = 0.79, RMSE = 3.5 K) and airborne (r2 = 0.75, RMSE = 2.4 K) observations over space and time, with precision lower over wetlands and lakes, and some improvement for capturing spatio‐temporal variation compared to a geostationary satellite. Further downscaling to 10 m using hyperspectral imagery resolved hot and cold spots across the landscape as evidenced by independent drone LST, with significant reduction in RMSE by 1.3 K. These results demonstrate a simple pathway for multi‐sensor retrieval of high space and time resolution LST. 
    more » « less
  4. Abstract The new TROPOspheric Monitoring Instrument (TROPOMI) solar‐induced chlorophyll fluorescence (SIF) data provides new opportunities to corroborate and improve global photosynthesis estimates. Here we report the spatiotemporal consistency between TROPOMI SIF and vegetation indices from the bidirectional reflectance distribution function (BRDF) adjusted (MCD43) and standard MODIS (MOD09) surface reflectance products, estimates of absorbed photosynthetically active radiation by chlorophyll (APARchl) derived from National Centers for Environmental Prediction Reanalysis‐2 (NCEP2), MODIS MCD18, and European Reanalysis (ERA5) data, and two GPP products (GPPVPMand GPPMOD17). We find (a) non‐adjusted VIs were more highly correlated with SIF at mid and high latitude than BRDF‐adjusted VIs, but were less correlated in the tropics, (b) negligible differences in the correlation between SIF and non‐adjusted NIRv and EVI, but BRDF‐adjusted NIRv had higher correlations with SIF at mid to high latitude than BRDF‐adjusted EVI but lower correlations in the tropics, (c) choice of PAR data set likely to cause substantial differences in global and regional GPP estimates and the correlation between modeled GPP and SIF, (d) SIF was more highly correlated with APARchlat high to mid latitude than EVI but more highly correlated with EVI at lower latitudes, and (e) GPPVPMis more highly correlated with SIF than GPPMOD17, except in sub‐Sahara Africa. Our results highlight that spaceborne photosynthesis would likely be improved by using a non‐linear response to PAR and that the fundamental differences between the vegetation indices and PAR data sets are likely to yield important differences in global and regional estimates of photosynthesis. 
    more » « less
  5. Arctic vegetation communities are rapidly changing with climate warming, which impacts wildlife, carbon cycling and climate feedbacks. Accurately monitoring vegetation change is thus crucial, but scale mismatches between field and satellite-based monitoring cause challenges. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between field data and satellite-based mapping. We assess the viability of using high resolution UAV imagery and UAV-derived Structure from Motion (SfM) to predict cover, height and aboveground biomass (henceforth biomass) of Arctic plant functional types (PFTs) across a range of vegetation community types. We classified imagery by PFT, estimated cover and height, and modeled biomass from UAV-derived volume estimates. Predicted values were compared to field estimates to assess results. Cover was estimated with root-mean-square error (RMSE) 6.29-14.2% and height was estimated with RMSE 3.29-10.5 cm, depending on the PFT. Total aboveground biomass was predicted with RMSE 220.5 g m-2, and per-PFT RMSE ranged from 17.14-164.3 g m-2. Deciduous and evergreen shrub biomass was predicted most accurately, followed by lichen, graminoid, and forb biomass. Our results demonstrate the effectiveness of using UAVs to map PFT biomass, which provides a link towards improved mapping of PFTs across large areas using earth observation satellite imagery. 
    more » « less