Abstract Fluids are commonly invoked as the primary cause for weakening of detachment shear zones. However, fluid-related mechanisms such as pressure-solution, reaction-enhanced ductility, reaction softening and precipitation of phyllosilicates are not fully understood. Fluid-facilitated reaction and mass transport cause rheological weakening and strain localization, eventually leading to departure from failure laws derived in laboratory experiments. This study focuses on the Miocene Raft River detachment shear zone in northwestern Utah. The shear zone is localized in the Proterozoic Elba Quartzite, which unconformably overlies the Archaean basement, and consists of an alternating sequence of quartzite and muscovite-quartzite schist. In this study, we characterize fluid-related microstructures to constrain conditions that promoted brittle failure in a plastically deforming shear zone. Thin-section analyses reveal the presence of healed microcracks, transgranular fluid inclusion planes and grain boundary fluid inclusion clusters. Healed microcracks occur in three sets, one sub-perpendicular to the mylonitic foliation, and a set of two conjugate microcracks oriented at ∼40–60° to the mylonitic foliation. Healed microfractures are filled with quartz, which has a distinct fabric, suggesting that microcracks healed while the shear zone was still at conditions favourable for quartz crystal plasticity. Transgranular fluid inclusion planes also occur in three sets, similar in orientation to the healed microfractures. Fluid inclusions commonly decorate grain and subgrain boundaries as inter- and intragranular clusters. Our results document ductile overprint of brittle microstructures, suggesting that, during exhumation, the Raft River detachment shear zone crossed the brittle–ductile transition repeatedly, providing pathways for fluids to permeate through this shear zone. 
                        more » 
                        « less   
                    
                            
                            Effect of Water‐Rock Ratio on the Stable Isotope Record of Fluid‐Rock‐Deformation Interactions in Detachment Shear Zone
                        
                    
    
            Abstract Oxygen and hydrogen stable isotope analyses of quartz and muscovite veins from the footwall of the Raft River detachment shear zone (Utah) provide insight into the hydrology and fluid‐rock interactions during ductile deformation. Samples were collected from veins containing 90%–100% quartz with orientations either at a high angle or sub‐parallel to the surrounding quartzite mylonite foliation. Stable isotope analysis was performed on 10 samples and compared with previous quartzite mylonite isotope data sets. The results indicate that the fluid present during deformation of the shear zone was meteoric in origin, with a δ2H value of approximately −100‰ and a δ18O value of approximately −13.7‰. Oxygen stable isotope O18O depletion correlates with the muscovite content of the analyzed rocks. Many of the analyzed samples in this and other studies show an apparent lack of equilibrium between the oxygen and hydrogen isotope systems, which can be explained by hydrogen and oxygen isotope exchange at varying fluid‐rock ratios. Our results suggest that the Raft River detachment shear zone had a low static fluid‐rock ratio (<0.1), yet experienced episodic influxes of fluids through semi‐brittle structures. This fluid was then expelled out into the surrounding mylonite following progressive shearing, causing further18O‐depletion and fluid‐related embrittlement. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10504823
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 25
- Issue:
- 5
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Quartz deformation fabrics reflect stress and strain conditions in mylonites, and their interpretation has become a mainstay of kinematic and structural analysis. Quantification of grain size and shape and interpretation of textures reflecting deformation mechanisms can provide estimates of flow stress, strain rate, kinematic vorticity, and deformation temperatures. Empirical calibration and determination of quartz flow laws is based on laboratory experiments of pure samples; however, pure quartzite mylonites are relatively uncommon. In particular, phyllosilicates may localize and partition strain that can inhibit or enhance different deformation mechanisms. Experimental results demonstrate that even minor phyllosilicate content (<15 vol%) can dramatically alter the strain behavior of quartz; however, few field studies have demonstrated these effects in a natural setting. To investigate the role of phyllosilicates on quartz strain fabrics, we quantify phyllosilicate content and distribution in quartzite mylonites from the Miocene Raft River detachment shear zone (NW Utah, USA). We use microstructural analysis and electron backscatter diffraction to quantify quartz deformation fabrics and muscovite spatial distribution, and X-ray computed tomography to quantify muscovite content in samples with varying amounts of muscovite collected across the detachment shear zone. Phyllosilicate content has a direct control on quartz deformation mechanisms, and application of piezometers and flow laws based on quartz deformation fabrics yield strain rates and flow stresses that vary by up to two orders of magnitude across our samples. These findings have important implications for the application of flow laws in quartzite mylonites and strain localization mechanisms in mid-crustal shear zones.more » « less
- 
            Abstract Measurements of oxygen and hydrogen stable isotope ratios (δ18O and δD) in meteoric waters provide insight to overlapping effects of evaporation, precipitation, and mixing on basin scale hydrology. This study of waters collected between 2016 and 2021 in the Turkana Basin, northern Kenya, uses δ18O and δD to understand water balance in Lake Turkana, a large, low‐latitude, alkaline desert lake. The Omo River, a major river system in the Ethiopian Highlands, is historically understood to provide approximately 90% of the water input to Lake Turkana. Discharge of the Omo is prohibitively difficult to measure, but stable isotope ratios in the lake may provide a meaningful method for monitoring the lake's response to changes in input. Precipitation in the Turkana Basin is low (<200 mm/year) with negligible rainfall on the lake's surface, and all water loss from the lake is evaporative. We compare new measurements with previous data from the region and records of lake height and precipitation from the same time period. We show that a Bayesian approach to modeling evaporation using atmospheric conditions and river δ18O and δD yields results consistent with published water balance models. Continued sampling of lake and meteoric waters in the Turkana Basin will be a useful way to monitor the lake's response to regional and global climate change.more » « less
- 
            Abstract During the subduction of an oceanic plate, fluids are released from metabasaltic crust, metasediment, and serpentinite under high‐pressure/low‐temperature conditions. Although some fluids may eventually leave the slab, some participate in metamorphic reactions within the slab during subduction and exhumation. To identify fluid sources and other controls influencing mineral composition, we report the in situ‐measured δ18O of lawsonite and garnet in blueschist‐ to eclogite‐facies rocks from 10 subduction zones that represent various field settings, including mélanges, structurally coherent terranes, and an eclogite xenolith derived from a subducted plate. Lawsonite records distinct δ18O depending on the host rock type and other rock types that were fluid sources during lawsonite growth. In general, lawsonite in metabasalt (7.6 ± 0.2–14.8 ± 1.1‰) is isotopically lighter than in metasediment (20.6 ± 1.4–24.1 ± 1.3‰) but heavier than in metagabbro (4.0 ± 0.4–7.9 ± 0.3‰). The extent of δ18O fractionation was evaluated for lawsonite–fluid and lawsonite–garnet pairs as a function of temperature (T). Results demonstrate that variations of >1.7‰ in lawsonite and >0.9‰ in garnet are not related to changingT. More likely, the relative contributions of fluids derived from isotopically heavier lithologies (e.g., sediments) versus lighter lithologies (e.g., ultramafic rocks) are the major control. Monte Carlo simulations were performed to investigate the sources of metasomatic fluids and the water/rock ratio that formed lawsonite‐bearing metasomatite. Results indicate that δ18OLwsand δ18OGrtrecord interactions with fluids sourced from diverse lithologies (sediment, serpentinite), further supporting that δ18OLwsis a useful indicator of subduction fluid‐rock interactions.more » « less
- 
            Carbonates are ubiquitous in the rock record and provide a broad array of stable isotope-based paleoclimatic proxies (i.e., δ18O, δ13C, ∆17O, ∆47, ∆48) that provide information on stratigraphy, carbon cycling, temperature, hydrology, and the altitude of ancient land surfaces. Thus, carbonates are an essential archive of environmental and topographic histories of continental terranes. However, carbonate minerals are highly susceptible to post-depositional alteration of primary isotopic values via fluid-mediated and solid-state reactions. We propose a hierarchical suite of techniques to comprehensively assess alteration in carbonates, from essential and readily accessible tools to novel, high-resolution techniques. This framework provides a means of identifying preserved textures in differentially altered samples that contain high-value environmental information. To illustrate this progressive approach, we present a case study of Tethyan nearshore carbonates from the Paleocene Tso Jianding Group (Tibet). We demonstrate the utility of each technique in identifying chemical and crystallographic indicators of post-depositional alteration at progressively finer spatial scales. For example, secondary ionization mass spectrometry (SIMS) oxygen isotope maps of micrite and bioclasts reveal significant isotopic heterogeneity due to grain-scale water-rock exchange in textures that were labeled “primary” by optical inspection at coarser spatial resolution. Optical and cathodoluminescence microscopy should be the minimum required assessment of carbonate samples used in stable isotope analyses, but supplemented when necessary by SIMS, PIC mapping, and other yet untapped technologies that may allow distinction of primary and altered fabrics at finer spatial resolutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
