Abstract Probabilistic near‐term forecasting facilitates evaluation of model predictions against observations and is of pressing need in ecology to inform environmental decision‐making and effect societal change. Despite this imperative, many ecologists are unfamiliar with the widely used tools for evaluating probabilistic forecasts developed in other fields. We address this gap by reviewing the literature on probabilistic forecast evaluation from diverse fields including climatology, economics, and epidemiology. We present established practices for selecting evaluation data (end‐sample hold out), graphical forecast evaluation (times‐series plots with uncertainty, probability integral transform plots), quantitative evaluation using scoring rules (log, quadratic, spherical, and ranked probability scores), and comparing scores across models (skill score, Diebold–Mariano test). We cover common approaches, highlight mathematical concepts to follow, and note decision points to allow application of general principles to specific forecasting endeavors. We illustrate these approaches with an application to a long‐term rodent population time series currently used for ecological forecasting and discuss how ecology can continue to learn from and drive the cross‐disciplinary field of forecasting science.
more »
« less
A Probabilistic Grammar of Graphics
Visualizations depicting probabilities and uncertainty are used everywhere from medical risk communication to machine learning, yet these probabilistic visualizations are difficult to specify, prone to error, and their designs are cumbersome to explore. We propose a Probabilistic Grammar of Graphics (PGoG), an extension to Wilkinson's original framework. Inspired by the success of probabilistic programming languages, PGoG makes probability expressions, such as P(A|B), a first-class citizen in the language. PGoG abstractions also reflect the distinction between probability and frequency framing, a concept from the uncertainty communication literature. It is expressive, encompassing product plots, density plots, icon arrays, and dotplots, among other visualizations. Its coherent syntax ensures correctness (that the proportions of visual elements and their spatial placement reflect the underlying probability distribution) and reduces edit distance between probabilistic visualization specifications, potentially supporting more design exploration. We provide a proof-of-concept implementation of PGoG in R.
more »
« less
- PAR ID:
- 10504928
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
- ISBN:
- 9781450367080
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools, which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real‐world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision‐making, we developed a hands‐on teaching module within the Macrosystems Environmental Data‐Driven Inquiry and Exploration (EDDIE;MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage ecology students in introductory data science, ecological modeling, and forecasting concepts without needing advanced computational or programming skills. Pre‐ and post‐module assessment data from more than 250 undergraduate students enrolled in ecology, freshwater ecology, and zoology courses indicate that the module significantly increased students' ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision‐making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software‐based learning, which can increase students' ability to engage and understand complex ecological concepts.more » « less
-
Network visualization is one of the most widely used tools in digital humanities research. The idea of uncertain or “fuzzy” data is also a core notion in digital humanities research. Yet network visualizations in digital humanities do not always prominently represent uncertainty. In this article, we present a mathematical and logical model of uncertainty as a range of values which can be used in network visualizations. We review some of the principles for visualizing uncertainty of different kinds, visual variables that can be used for representing uncertainty, and how these variables have been used to represent different data types in visualizations drawn from a range of non-humanities fields like climate science and bioinformatics. We then provide examples of two diagrams: one in which the variables displaying degrees of uncertainty are integrated/pinto the graph and one in which glyphs are added to represent data certainty and uncertainty. Finally, we discuss how probabilistic data and what-if scenarios could be used to expand the representation of uncertainty in humanities network visualizations.more » « less
-
Visualizations of data provide a proven method for analysts to explore and make data-driven discoveries. However, current visualization tools provide only limited support for hypothesis-driven analyses, and often lack capabilities that would allow users to visually test the fit of their conceptual models against the data. This imbalance could bias users to overly rely on exploratory visual analysis as the principal mode of inquiry, which can be detrimental to discovery. To address this gap, we propose a new paradigm for ‘concept-driven’ visual analysis. In this style of analysis, analysts share their conceptual models and hypotheses with the system. The system then uses those inputs to drive the generation of visualizations, while providing plots and interactions to explore places where models and data disagree. We discuss key characteristics and design considerations for concept-driven visualizations, and report preliminary findings from a formative study.more » « less
-
We conducted a longitudinal study during the 2022 U.S. midterm elections, investigating the real-world impacts of uncertainty visualizations. Using our forecast model of the governor elections in 33 states, we created a website and deployed four uncertainty visualizations for the election forecasts: single quantile dotplot (1-Dotplot), dual quantile dotplots (2-Dotplot), dual histogram intervals (2-Interval), and Plinko quantile dotplot (Plinko), an animated design with a physical and probabilistic analogy. Our online experiment ran from Oct. 18, 2022, to Nov. 23, 2022, involving 1,327 participants from 15 states. We use Bayesian multilevel modeling and post-stratification to produce demographically-representative estimates of people's emotions, trust in forecasts, and political participation intention. We find that election forecast visualizations can heighten emotions, increase trust, and slightly affect people's intentions to participate in elections. 2-Interval shows the strongest effects across all measures; 1-Dotplot increases trust the most after elections. Both visualizations create emotional and trust gaps between different partisan identities, especially when a Republican candidate is predicted to win. Our qualitative analysis uncovers the complex political and social contexts of election forecast visualizations, showcasing that visualizations may provoke polarization. This intriguing interplay between visualization types, partisanship, and trust exemplifies the fundamental challenge of disentangling visualization from its context, underscoring a need for deeper investigation into the real-world impacts of visualizations. Our preprint and supplements are available at https://doi.org/osf.io/ajq8f .more » « less
An official website of the United States government

