skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Equilibrium Learning of Explicit Regularization Functionals for Imaging Inverse Problems
There has been significant recent interest in the use of deep learning for regularizing imaging inverse problems. Most work in the area has focused on regularization imposed implicitly by convolutional neural networks (CNNs) pre-trained for image reconstruction. In this work, we follow an alternative line of work based on learning explicit regularization functionals that promote preferred solutions. We develop the Explicit Learned Deep Equilibrium Regularizer (ELDER) method for learning explicit regularization functionals that minimize a mean-squared error (MSE) metric. ELDER is based on a regularization functional parameterized by a CNN and a deep equilibrium learning (DEQ) method for training the functional to be MSE-optimal at the fixed points of the reconstruction algorithm. The explicit regularizer enables ELDER to directly inherit fundamental convergence results from optimization theory. On the other hand, DEQ training enables ELDER to improve over existing explicit regularizers without prohibitive memory complexity during training. We use ELDER to train several approaches to parameterizing explicit regularizers and test their performance on three distinct imaging inverse problems. Our results show that ELDER can greatly improve the quality of explicit regularizers compared to existing methods, and show that learning explicit regularizers does not compromise performance relative to methods based on implicit regularization.  more » « less
Award ID(s):
2043134
PAR ID:
10504934
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Open Journal of Signal Processing
Volume:
4
ISSN:
2644-1322
Page Range / eLocation ID:
390 to 398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many modern approaches to image reconstruction are based on learning a regularizer that implicitly encodes a prior over the space of images. For large-scale images common in imaging domains like remote sensing, medical imaging, astronomy, and others, learning the entire image prior requires an often-impractical amount of training data. This work describes a deep image patch-based regularization approach that can be incorporated into a variety of modern algorithms. Learning a regularizer amounts to learning the a prior for image patches, greatly reducing the dimension of the space to be learned and hence the sample complexity. Demonstrations in a remote sensing application illustrates that learning patch-based regularizers produces high-quality reconstructions and even permits learning from a single ground-truth image. 
    more » « less
  2. Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely- used frameworks for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image priors. While traditional PnP/RED formulations have focused on priors specified using image denoisers, there is a growing interest in learning PnP/RED priors that are end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly differentiating through the fixed-point equations without storing intermediate activation values. However, the dependence of the computational/memory complexity of the measurement models in PnP/RED on the total number of measurements leaves DEQ impractical for many imaging applications. We propose ODER as a new strategy for improving the efficiency of DEQ through stochastic approximations of the measurement models. We theoretically analyze ODER giving insights into its ability to approximate the traditional DEQ approach for solving inverse problems. Our numerical results suggest the potential improvements in training/testing complexity due to ODER on three distinct imaging applications. 
    more » « less
  3. Plug-and-Play Priors (PnP) is a well-known class of methods for solving inverse problems in computational imaging. PnP methods combine physical forward models with learned prior models specified as image denoisers. A common issue with the learned models is that of a performance drop when there is a distribution shift between the training and testing data. Test-time training (TTT) was recently proposed as a general strategy for improving the performance of learned models when training and testing data come from different distributions. In this paper, we propose PnP-Ttt as a new method for overcoming distribution shifts in PnP. PnP-TTT uses deep equilibrium learning (DEQ) for optimizing a self-supervised loss at the fixed points of PnP iterations. PnP-TTT can be directly applied on a single test sample to improve the generalization of PnP. We show through simulations that given a sufficient number of measurements, PnP-TTT enables the use of image priors trained on natural images for image reconstruction in magnetic resonance imaging (MRI). 
    more » « less
  4. Deep model-based architectures (DMBAs) are widely used in imaging inverse problems to integrate physical measurement models and learned image priors. Plug-and-play priors (PnP) and deep equilibrium models (DEQ) are two DMBA frameworks that have received significant attention. The key difference between the two is that the image prior in DEQ is trained by using a specific measurement model, while that in PnP is trained as a general image denoiser. This difference is behind a common assumption that PnP is more robust to changes in the measurement models compared to DEQ. This paper investigates the robustness of DEQ priors to changes in the measurement models. Our results on two imaging inverse problems suggest that DEQ priors trained under mismatched measurement models outperform image denoisers. 
    more » « less
  5. We develop a variational framework to understand the properties of the functions learned by neural networks fit to data. We propose and study a family of continuous-domain linear inverse problems with total variation-like regularization in the Radon domain subject to data fitting constraints. We derive a representer theorem showing that finite-width, singlehidden layer neural networks are solutions to these inverse problems. We draw on many techniques from variational spline theory and so we propose the notion of polynomial ridge splines, which correspond to single-hidden layer neural networks with truncated power functions as the activation function. The representer theorem is reminiscent of the classical reproducing kernel Hilbert space representer theorem, but we show that the neural network problem is posed over a non-Hilbertian Banach space. While the learning problems are posed in the continuous-domain, similar to kernel methods, the problems can be recast as finite-dimensional neural network training problems. These neural network training problems have regularizers which are related to the well-known weight decay and path-norm regularizers. Thus, our result gives insight into functional characteristics of trained neural networks and also into the design neural network regularizers. We also show that these regularizers promote neural network solutions with desirable generalization properties. Keywords: neural networks, splines, inverse problems, regularization, sparsity 
    more » « less