skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biologging as an important tool to uncover behaviors of cryptic species: an analysis of giant armadillos ( Priodontes maximus )
Advances in biologging have increased the understanding of how animals interact with their environment, especially for cryptic species. For example, giant armadillos (Priodontes maximus) are the largest extant species of armadillo but are rarely encountered due to their fossorial and nocturnal behavior. Through the analysis of speed, turning angles, and accelerometer activity counts, we estimated behavioral states, characterized activity budgets, and investigated the state-habitat associations exhibited by individuals monitored with GPS telemetry in the Brazilian Pantanal from 2019 to 2020. This methodology is proposed as a useful framework for the identification of priority habitat. Using the non-parametric Bayesian mixture model for movement (M3), we estimated four latent behavioral states that were named ‘vigilance-excavation’, ‘local search’, ‘exploratory’, and ‘transit’. These states appeared to correspond with behavior near burrows or termite mounds, foraging, ranging, and rapid movements, respectively. The first and last hours of activity presented relatively high proportions of the vigilance-excavation state, while most of the activity period was dominated by local search and exploratory states. The vigilance-excavation state occurred more frequently in regions between forest and closed savannas, whereas local search was more likely in high proportions of closed savanna. Exploratory behavior probability increased in areas with high proportions of both forest and closed savanna. Our results establish a baseline for behavioral complexity, activity budgets, and habitat associations in a relatively pristine environment that can be used for future work to investigate anthropogenic impacts on giant armadillo behavior and fitness. The integration of accelerometer and GPS-derived movement data through our mixture model has the potential to become a powerful methodological approach for the conservation of other cryptic species.  more » « less
Award ID(s):
2040819
PAR ID:
10504970
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
PeerJ
Date Published:
Journal Name:
PeerJ
Volume:
11
ISSN:
2167-8359
Page Range / eLocation ID:
e14726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Animal behavior is an important component of individual, population, and community responses to anthropogenic habitat alteration. For example, antipredator behavior (e.g., vigilance) and animal movement behavior may both be important behavioral responses to the increased density of habitat edges and changes in patch connectivity that characterize highly modified habitats. Importantly, edge density and connectivity might interact, and this interaction is likely to mediate animal behavior: linear, edge‐rich landscape features often provide structural connectivity between patches, but the functional connectedness of patches for animal use could depend upon how edge density modifies animal vigilance and movement. Using remote cameras in large‐scale experimental landscapes that manipulate edge density (high‐ vs. low‐density edges) and patch connectivity (isolated or connected patches), we examined the effects of edge density and connectivity on the antipredator behavior and movement behavior of white‐tailed deer (Odocoileus virginianus). Deer vigilance was 1.38 times greater near high‐density edges compared to low‐density edges, regardless of whether patches were connected or isolated. Deer were also more likely to move parallel to connected high‐density edges than all other edge types, suggesting that connectivity promotes movement along high‐density edges. These results suggest that increases in edge density that accompany human fragmentation of existing habitats may give rise to large‐scale changes in the antipredator behavior of deer. These results also suggest that conservation strategies that simultaneously manipulate edge density and connectivity (i.e., habitat corridors) may have multiple effects on different aspects of deer behavior: linear habitat corridors were areas of high vigilance, but also areas where deer movement behavior implied increased movement along the habitat edge. 
    more » « less
  2. ABSTRACT Behavioral variation within a population can be influenced by physical factors such as size, sex, and body condition. This variation may contribute to intraspecific niche breadth by enabling individuals to exploit different niches. To examine how anatomy shapes behavior, we conducted open field tests on desert kangaroo rats (Dipodomys deserti, n=16) and compared their activity to sex, morphology, and body condition. We constructed an arena within the species' natural habitat to simulate ecologically relevant conditions and recorded behavior over 15 min. We quantified speed and distance traveled, used principal component analysis to explore behavioral patterns, and used linear models to test for associations between behavior, locomotor traits, and anatomical variables. We found that individuals with lower body condition scores spent more time exploring, males were more exploratory than females, and individuals with longer feet – a proxy for skeletal size – traveled further. However, behavior and locomotor performance were not significantly correlated. Lastly, individuals moved faster and farther on full moon nights compared to new moon nights, indicating that moonlight influences movement strategy – potentially reflecting trade-offs between foraging and predation risk. These findings highlight species-specific drivers of behavioral variation and underscore the importance of understanding behavioral variability of desert mammals. 
    more » « less
  3. In Subarctic and Arctic environments, daily patterns of activity and space-use are strongly influenced by interplay between seasonal abiotic factors and the corresponding responses of the biotic environment. Here we combined accelerometry with GPS telemetry of Canada lynx (Lynx canadensis (Kerr, 1792), n=12) in northern Alaska to test the hypotheses that lynx activity would peak during twilight throughout the year, coinciding with activity of their preferred prey, and that individuals with larger home ranges would have greater spatial displacement and expend more energy on movement. Lynx activity occurred throughout the 24h day and peaked during twilight, but variation among individuals was high and diel rhythms were sometimes only detectable using the finer resolution accelerometer data. Surprisingly, home range size was not correlated with movement costs estimated via acceleration, but step length and acceleration were correlated in a positive curvilinear fashion. However, step length was sometimes disproportionately lower than predicted by acceleration. Such intervals of high activity with low spatial displacement were often followed by periods of rest, suggesting they may be indicative of hunting in a restricted patch of habitat. We conclude that accelerometers can provide additional information to supplement GPS data, providing a more complete picture of animal behavior. 
    more » « less
  4. Large and densely sampled sensor datasets can contain a range of complex stochastic structures that are difficult to accommodate in conventional linear models. This can confound attempts to build a more complete picture of an animal’s behavior by aggregating information across multiple asynchronous sensor platforms. The Livestock Informatics Toolkit (LIT) has been developed in R to better facilitate knowledge discovery of complex behavioral patterns across Precision Livestock Farming (PLF) data streams using novel unsupervised machine learning and information theoretic approaches. The utility of this analytical pipeline is demonstrated using data from a 6-month feed trial conducted on a closed herd of 185 mix-parity organic dairy cows. Insights into the tradeoffs between behaviors in time budgets acquired from ear tag accelerometer records were improved by augmenting conventional hierarchical clustering techniques with a novel simulation-based approach designed to mimic the complex error structures of sensor data. These simulations were then repurposed to compress the information in this data stream into robust empirically-determined encodings using a novel pruning algorithm. Nonparametric and semiparametric tests using mutual and pointwise information subsequently revealed complex nonlinear associations between encodings of overall time budgets and the order that cows entered the parlor to be milked. 
    more » « less
  5. Abstract Major disturbances can temporarily remove factors that otherwise constrain population abundance and distribution. During such windows of relaxed top‐down and/or bottom‐up control, ungulate populations can grow rapidly, eventually leading to resource depletion and density‐dependent expansion into less‐preferred habitats. Although many studies have explored the demographic outcomes and ecological impacts of these processes, fewer have examined the individual‐level mechanisms by which they occur. We investigated these mechanisms in Gorongosa National Park, where the Mozambican Civil War devastated large‐mammal populations between 1977 and 1992. Gorongosa’s recovery has been marked by proliferation of waterbuck (Kobus ellipsiprymnus), an historically marginal 200‐kg antelope species, which is now roughly 20‐fold more abundant than before the war. We show that after years of unrestricted population growth, waterbuck have depleted food availability in their historically preferred floodplain habitat and have increasingly expanded into historically avoided savanna habitat. This expansion was demographically skewed: mixed‐sex groups of prime‐age individuals remained more common in the floodplain, while bachelors, loners, and subadults populated the savanna. By coupling DNA metabarcoding and forage analysis, we show that waterbuck in these two habitats ate radically different diets, which were more digestible and protein‐rich in the floodplain than in savanna; thus, although individuals in both habitats achieved positive net energy balance, energetic performance was higher in the floodplain. Analysis of daily activity patterns from high‐resolution GPS‐telemetry, accelerometry, and animal‐borne video revealed that savanna waterbuck spent less time eating, perhaps to accommodate their tougher, lower‐quality diets. Waterbuck in savanna also had more ectoparasites than those in the floodplain. Thus, plasticity in foraging behavior and diet selection enabled savanna waterbuck to tolerate the costs of density‐dependent spillover, at least in the short term; however, the already poorer energetic performance of these individuals implies that savanna occupancy may become prohibitively costly as heterospecific competitors and predators continue to recover in Gorongosa. Our results suggest that behavior can provide a leading indicator of the onset of density‐dependent limitation and the likelihood of subsequent population decline, but that reliable inference hinges on understanding the mechanistic basis of observed behavioral shifts. 
    more » « less