skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Millions of jobs in food production are disappearing — a change in mindset would help to keep them
Halting the loss of jobs and knowledge from small-scale producers requires investing in rural sustainability, addressing poverty and inequity and ensuring the economic gains stay local. The benefits would be shared globally.  more » « less
Award ID(s):
2009288
PAR ID:
10504985
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
620
Issue:
7972
ISSN:
0028-0836
Page Range / eLocation ID:
33 to 36
Subject(s) / Keyword(s):
food, sustainability
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Merit is a central pillar of liberal epistemology, humanism, and democracy. The scientific enterprise, built on merit, has proven effective in generating scientific and technological advances, reducing suffering, narrowing social gaps, and improving the quality of life globally. This perspective documents the ongoing attempts to undermine the core principles of liberal epistemology and to replace merit with non-scientific, politically motivated criteria. We explain the philosophical origins of this conflict, document the intrusion of ideology into our scientific institutions, discuss the perils of abandoning merit, and offer an alternative, human-centered approach to address existing social inequalities. 
    more » « less
  2. Bar-Cohen, Y; Zacny, K (Ed.)
    The need for scientific ice drilling in glaciers and ice sheets has been driven by many fields of science, including drilling ice cores for evidence of past environment and paleoclimate information, and drilling access holes through the ice to gather data relevant to glacial dynamics, history of glacier extent, sediment sampling, and discovery of ecosystems within and beneath the ice. Many nations have contributed to drilling technologies relevant to each of these fields, and developments in any one nation often build on prior designs from other nations. A description of the very early polar ice coring endeavors in Greenland and Antarctica is provided in Langway (2008). Ice drilling and coring technologies that were developed before 2008 are well described in Bentley et al (2009), including a wide array of ice coring drills, drills designed to create holes in ice only, and autonomous instruments that melt their way through ice. The text by [Talalay 2016] provides a review of mechanical ice drilling technology that includes design, parameters and performance of an assortment of tools and drills for making holes in snow, firn and ice. Described in detail are direct-push drilling, hand- and power-driven portable drills, percussion drills, conventional machine-driven rotary drill rigs, flexible drill-stem drill rigs, cable-suspended electromechanical auger drills, cable-suspended electromechanical drills with bottom-hole circulation, and drilling challenges and perspective for future development. In this chapter our goal is to describe new ice drilling and coring technologies that have been designed, built, and used in the field in the most recent decade. Some of these technologies are improvements on prior drills, while other technologies such as a replicate ice coring drill, geologic drilling underneath many meters of glacial ice, and the rapid access isotope drill are the first of their kind. There are many additional ice drilling and sampling designs currently in the design or development stage that are not included in this chapter; rather our goal in this chapter is to describe proven ice drilling technologies that have been developed since 2009. 
    more » « less
  3. Abstract: Tribal Nations in the United States are afflicted by a number of disparities including health, socioeconomics, education, and contaminant exposure to name a few. To understand drinking water quality disparities, we analyzed Safe Drinking Water Act violations in Indian Country found in the Environmental Protection Agency’s (EPA’s) Enforcement and Compliance History Online (ECHO) and compared them to violations in non-tribal areas of the same state for the time period 2014 – 2017. The violations assessed were total point accumulations per year per 1,000 customers, health-based maximum contaminant limit (MCL), reporting and monitoring, and public notice for each state reporting tribal data. Violation point disparities were evident, as tribal facilities acquired nearly six times the points of the national average. In some states, health-based tribal water quality was better than in non-tribal communities, however Arizona, Iowa, Idaho, Montana, Utah, and Wyoming had MCL violations affecting a greater percentage of tribal populations than non-tribal. Nation-wide, monitoring and reporting violations affected tribal communities at nearly twice the rate of non-tribal customers. Public notice reporting was high and comparable for both tribal and non-tribal facilities. Finally, a comparison of small drinking water facilities, under which ~97% of the surveyed tribal drinking water falls, confirmed state-wide disparities. Solutions for the apparent disparities in Indian Country and on non-tribal lands may be as simple as rectifying monitoring and reporting violations, though this correction will not shift the overall water quality difference. Addressing MCL and treatment violations is the next step to reduce the disparity. 
    more » « less
  4. null (Ed.)
    The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain’s functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer’s disease, and Parkinson’s disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions. 
    more » « less
  5. This paper explores how the relationship between ethics and engineering has been and could be framed. Specifically, two distinct framings will be conceptualized and explored: ethics in engineering and engineering in ethics. As with other disciplines, engineering typically subsumes ethics, appropriating it as its own unique subfield. As a framing, ethics in engineering produces specialized standards, codes, values, perspectives, and problems distinct to engineering thought and practice. These form an engineering education discourse with which engineers engage. It is epistemological in its focus, meaning that this framing constructs knowledge of proper disciplinary conduct. On the other hand, engineering in ethics as a framing device insists that engineering become a specialized articulation of ethical thought and action. Here, “engineer” and “engineering” are not nouns but verbs, referring to particular processes and technologies for transformation. One is not an “engineer;” rather, one “engineers.” One is first an ethical subject – an historical aggregate of continuous experiences/becomings – concerned with the pursuit of “the good” in the present; then, when contextually relevant, such a subject’s engineering knowledge and skills may be employed as powerful means for the becoming-good of shared worlds. In this paper, engineering in ethics is further conceptualized through a playful intermingling of an ethic of care, via the scholarship of Joan Tronto, and a Deweyian approach to ethical inquiry. Tronto’s four elements of care – attentiveness, responsibility, competence, and responsiveness – are joined with what are arguably four key components of Dewey’s process of ethical inquiry: awareness, judgment, experimentation, and iteration. This paper argues that 1) being attentive is required to achieve awareness of a given need or problem, 2) taking responsibility is a necessary practice for making and acting on one’s judgements related to the need at hand, 3) competence in a relevant skill is needed to experiment with one’s judgements, and 4) careful consideration of how others respond to how one has addressed a need is essential for the purposes of iteration. While all four contribute to the notion of engineering in ethics, the relationship between competence and experimentation is where engineering is most evidently seized as an ethical expression. How one competently wields engineering knowledge and skillfully performs disciplinary techniques is, here, foremost about actively inquiring into how to provide care for a specific need and, in doing so, creating a world aligned with one’s vision of “the good.” This paper will close with a brief consideration of the educational implications of engineering in ethics. 
    more » « less