skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Behaviors of Ionospheric Topside Ion Density, Ion Temperature, and Electron Temperature During the 20 November 2003 Superstorm
Abstract We identified a few new storm‐time ionospheric phenomena by analyzing disturbances in topside ion density, electron temperature, and ion temperature at ∼840 km altitude measured by theDefense Meteorological Satellite Programsatellites during the 20 November 2003 magnetic storm. The storm‐time ion density enhancements showed different features at different local times. Longitudinal structures in the enhanced ion density occurred in the morning sector and extended from equatorial regions to middle latitudes. Ion density increase due to enhanced fountain effect was observed in the evening sector and lasted for ∼18 hr. A positive ionospheric storm occurred during the late recovery phase of the storm and was associated with increased atomic oxygen to molecular nitrogen column density ratio. Electron temperature at subauroral latitudes reached 8000 K during the storm, ∼4000 K higher than the quiet‐time temperature. The subauroral temperature enhancement lasted for 2–3 days. Simultaneous enhancements in the ion density, electron temperature, and ion temperature from subauroral to equatorial latitudes occurred in the night‐time ionosphere and lasted for ∼18 hr. A negative correlation between ion density and electron/ion temperature variations occurred in the dusk sector for ∼12 hr. An enhanced ion temperature crest in the winter hemisphere during the magnetic storm lasted for 2 days. A decrease in the ion temperature crest was also observed with an increase of the ion density. These new features in the ionospheric density and temperature, together with the results from previous studies, provide a more comprehensive scenario of the ionospheric response to the superstorm.  more » « less
Award ID(s):
2033843
PAR ID:
10505014
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
8
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We have used measurements of the Defense Meteorological Satellite Program (DMSP) satellites to study variations of electron temperature in the subauroral ionosphere during the magnetic storm on 17–25 March 2015. This magnetic storm had a long recovery phase of 7 days, and the ionospheric behavior over the entire storm time was seldom investigated. In this study, we find that the electron temperature at subauroral latitudes was continuously enhanced for 8 days, from the storm onset to the end of the recovery phase. The maximum electron temperature during the storm times was 1000–4000 K higher than the maximum electron temperature during quiet times. This long‐lasting enhancement of subauroral electron temperature was attributed to energy transfer among the solar wind, magnetosphere, ring current, plasmasphere, and ionosphere driven by high‐speed solar wind streams and fluctuating interplanetary magnetic field during the entire 8‐day period of the storm. The electron temperature enhancements were quite symmetric in the post‐midnight sector but became strongly asymmetric near dawn between the southern and northern hemispheres. The asymmetric enhancements of electron temperature near dawn may be related to the magnetic declination and the daytime midlatitude trough in the southern hemisphere. Large daily variations of maximum electron temperature in the post‐midnight sector were observed and may be related to the offset between geomagnetic and geographic latitudes. These DMSP observations provide new insight on ionospheric response to intense magnetic storms. 
    more » « less
  2. Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change. 
    more » « less
  3. Abstract This paper conducts a multi‐instrument analysis and data assimilation study of midlatitude ionospheric disturbances over the European and North American longitude sectors during a strong geomagnetic storm on 26–28 February 2023. The study uses a set of ground‐based (GNSS receivers, ionosondes) observations, space‐borne (DMSP, GOLD) measurements, and a new TEC‐based ionospheric data assimilation system (TIDAS). We observed a series of distinct storm‐time features with regard to storm‐enhanced density (SED) and subauroral polarization stream (SAPS) as follows: (a) Under multiple ring current intensifications, the storm‐time subauroral ionosphere produced long‐lasting duskside SAPS for ∼36 hr along with considerable dawnside SAPS for several hours. (b) Associated with long‐lived SAPS, strong SED occurred consecutively in the European longitude sector near local noon during a positive ionospheric storm and later in the North American longitude sector near local dusk during a negative ionospheric storm. (c) The 3‐D morphology of SED in multiple longitude sectors was reconstructed using TIDAS data assimilation technique with fine‐scale details, which revealed a narrow ionospheric plasma channel with electron density enhancement and layer uplift. 
    more » « less
  4. Abstract The space weather event on 10–11 May 2024 was a high‐impact geomagnetic storm, resulting in a SYM‐H index decrease to −518 nT, the lowest level registered in several decades. We investigated the response of the Earth's ionosphere during the main phase of this storm using a comprehensive data set of ionospheric observations (in situ plasma density and/or Total Electron Content (TEC)) from twenty Low‐Earth‐Orbit satellites such as COSMIC‐2, Swarm, GRACE‐FO, Spire, DMSP, and Jason‐3, orbiting at altitudes between 320 and 1,330 km. We found that ionospheric response followed a classical development pattern with the largest positive effects occurred at low and middle latitudes in daytime and evening sectors, associated with significant intensification of the Equatorial Ionization Anomaly (EIA) by the super fountain effect. The greatest effects occurred in the Pacific and American longitudinal sectors, which were in daylight, between 19 and 24 UT on 10 May 2024. This time overlaps with a period of steady southward IMF Bz and favorable conditions for long‐lasting penetration electric fields. The EIA crest‐to‐crest separation expanded to 40–60° in latitude with the largest poleward excursion of the crest to ∼27° magnetic latitude. The extreme EIA expansion with crest separation up to 60° in latitude along with a giant plasma bite‐out near the magnetic equator were observed in the dusk/evening sector over South America. The ground‐based TEC showed an enhancement up to ∼200 TECU, while satellites detected an increase in topside TEC up to ∼100–155 TECU, indicating key contribution of the topside ionosphere into the ground‐based TEC. 
    more » « less
  5. Abstract This study investigates the global distribution of electron temperature enhancement observed by Defense Meteorological Satellite Program F16 satellite and its dependence on the season and solar activity for the solar maximum (2014) and minimum (2018) years during geomagnetic quiet times (maximum per day ap <10). Electron temperature enhancements occurred mainly over the North American‐Atlantic (260°–360°E) and Eurasia (0°–160°E) (Southern Oceania (80°–280°E)) sector in the Northern (Southern) Hemisphere and are prominent in the winter hemispheres and solar maximum year. They have obvious longitude characteristics. Interestingly, they could extend to geomagnetic equatorial regions in the North American‐Atlantic sector from high to low latitudes in the December Solstice, further crossed the magnetic equator, and merged into the Southern Hemisphere in 2014, where the maximum temperature reached ∼3500 K. Our analysis indicates that low‐energy electrons (<100 eV) associated with photoelectron from the conjugate sunlit hemisphere, can contribute to these enhancements. Furthermore, the local geomagnetic declination, magnetic equator position, and terminator position at magnetic conjugate points together can impact the global distribution of photoelectrons of different energies and therefore the electron temperature enhancement distribution. Other processes (including local electron density variation) may play certain roles as well. 
    more » « less