Abstract We have used measurements of the Defense Meteorological Satellite Program (DMSP) satellites to study variations of electron temperature in the subauroral ionosphere during the magnetic storm on 17–25 March 2015. This magnetic storm had a long recovery phase of 7 days, and the ionospheric behavior over the entire storm time was seldom investigated. In this study, we find that the electron temperature at subauroral latitudes was continuously enhanced for 8 days, from the storm onset to the end of the recovery phase. The maximum electron temperature during the storm times was 1000–4000 K higher than the maximum electron temperature during quiet times. This long‐lasting enhancement of subauroral electron temperature was attributed to energy transfer among the solar wind, magnetosphere, ring current, plasmasphere, and ionosphere driven by high‐speed solar wind streams and fluctuating interplanetary magnetic field during the entire 8‐day period of the storm. The electron temperature enhancements were quite symmetric in the post‐midnight sector but became strongly asymmetric near dawn between the southern and northern hemispheres. The asymmetric enhancements of electron temperature near dawn may be related to the magnetic declination and the daytime midlatitude trough in the southern hemisphere. Large daily variations of maximum electron temperature in the post‐midnight sector were observed and may be related to the offset between geomagnetic and geographic latitudes. These DMSP observations provide new insight on ionospheric response to intense magnetic storms.
more »
« less
Global Distribution of Electron Temperature Enhancement at Mid‐Low Latitudes Observed by DMSP F16 Satellite
Abstract This study investigates the global distribution of electron temperature enhancement observed by Defense Meteorological Satellite Program F16 satellite and its dependence on the season and solar activity for the solar maximum (2014) and minimum (2018) years during geomagnetic quiet times (maximum per day ap <10). Electron temperature enhancements occurred mainly over the North American‐Atlantic (260°–360°E) and Eurasia (0°–160°E) (Southern Oceania (80°–280°E)) sector in the Northern (Southern) Hemisphere and are prominent in the winter hemispheres and solar maximum year. They have obvious longitude characteristics. Interestingly, they could extend to geomagnetic equatorial regions in the North American‐Atlantic sector from high to low latitudes in the December Solstice, further crossed the magnetic equator, and merged into the Southern Hemisphere in 2014, where the maximum temperature reached ∼3500 K. Our analysis indicates that low‐energy electrons (<100 eV) associated with photoelectron from the conjugate sunlit hemisphere, can contribute to these enhancements. Furthermore, the local geomagnetic declination, magnetic equator position, and terminator position at magnetic conjugate points together can impact the global distribution of photoelectrons of different energies and therefore the electron temperature enhancement distribution. Other processes (including local electron density variation) may play certain roles as well.
more »
« less
- PAR ID:
- 10484420
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 128
- Issue:
- 9
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study investigates midlatitude ionospheric variations during the super geomagnetic storm on 10–11 May 2024, utilizing multi‐instrument data from ground‐based sources (Global Navigation Satellite Systems receivers and a Fabry–Perot Interferometer) and space‐based measurements (Swarm and DMSP). We observed several distinct density gradient structures in the midlatitude ionosphere, with the main findings summarized as follows: (a) Significant zonal plasma density enhancements developed continuously in local dusk across the American‐Pacific‐Asian longitude sectors around geomagnetic latitude. These midlatitude peaks exhibited a wide longitudinal extension exceeding 150 and a prolonged duration of 12–15 hr during the late main phase and early recovery phase of the storm. (b) Strong storm‐enhanced density (SED) was observed in both hemispheres yet with different longitudinal and universal time preferences. In the Northern Hemisphere, significant SED occurred over the American longitude sector during 20:30–22:30 UT on May 10. In the Southern Hemisphere, pronounced SED was observed not only in the American longitudes during 20:30–22:30 UT on May 10 but also in the Australian longitude sector during 02:00–04:00 UT on May 11.more » « less
-
Abstract This paper investigates the midlatitude ionospheric disturbances over the American/Atlantic longitude sector during an intense geomagnetic storm on 23 April 2023. The study utilized a combination of ground‐based observations (Global Navigation Satellite System total electron content and ionosonde) along with measurements from multiple satellite missions (GOLD, Swarm, Defense Meteorological Satellite Program, and TIMED/GUVI) to analyze storm‐time electrodynamics and neutral dynamics. We found that the storm main phase was characterized by distinct midlatitude ionospheric density gradient structures as follows: (a) In the European‐Atlantic longitude sector, a significant midlatitude bubble‐like ionospheric super‐depletion structure (BLISS) was observed after sunset. This BLISS appeared as a low‐density channel extending poleward/westward and reached ∼40° geomagnetic latitude, corresponding to an APEX height of ∼5,000 km. (b) Coincident with the BLISS, a dynamic storm‐enhanced density plume rapidly formed and decayed at local afternoon in the North American sector, with the plume intensity being doubled and halved in just a few hours. (c) The simultaneous occurrence of these strong yet opposite midlatitude gradient structures could be mainly attributed to common key drivers of prompt penetration electric fields and subauroral polarization stream electric fields. This shed light on the important role of storm‐time electrodynamic processes in shaping global ionospheric disturbances.more » « less
-
Abstract We identified a few new storm‐time ionospheric phenomena by analyzing disturbances in topside ion density, electron temperature, and ion temperature at ∼840 km altitude measured by theDefense Meteorological Satellite Programsatellites during the 20 November 2003 magnetic storm. The storm‐time ion density enhancements showed different features at different local times. Longitudinal structures in the enhanced ion density occurred in the morning sector and extended from equatorial regions to middle latitudes. Ion density increase due to enhanced fountain effect was observed in the evening sector and lasted for ∼18 hr. A positive ionospheric storm occurred during the late recovery phase of the storm and was associated with increased atomic oxygen to molecular nitrogen column density ratio. Electron temperature at subauroral latitudes reached 8000 K during the storm, ∼4000 K higher than the quiet‐time temperature. The subauroral temperature enhancement lasted for 2–3 days. Simultaneous enhancements in the ion density, electron temperature, and ion temperature from subauroral to equatorial latitudes occurred in the night‐time ionosphere and lasted for ∼18 hr. A negative correlation between ion density and electron/ion temperature variations occurred in the dusk sector for ∼12 hr. An enhanced ion temperature crest in the winter hemisphere during the magnetic storm lasted for 2 days. A decrease in the ion temperature crest was also observed with an increase of the ion density. These new features in the ionospheric density and temperature, together with the results from previous studies, provide a more comprehensive scenario of the ionospheric response to the superstorm.more » « less
-
Abstract The storm‐enhanced density (SED) is a large‐scale midlatitude ionospheric electron density enhancement in the local afternoon sector, which exhibits substantial spatial gradients and thus can impose detrimental effects on modern navigation and communication systems, causing potential space weather hazards. This study has identified a comprehensive list of 49 SED events over the continental US and adjacent regions, by examining strong geomagnetic storms occurring between 2000 and 2023. The ground‐based Global Navigation Satellite System (GNSS) total electron content and data from a new TEC‐based ionospheric data assimilation system were used to analyze the characteristics of SED. For each derived SED events, we have quantified its morphology by employing a Gaussian function to parameterize key characteristics of the SED, such as the plume intensity, central longitude, and half‐width. A statistical analysis of SEDs was conducted for the first time to characterize their climatological features. We found that the SED distribution exhibits a higher peak intensity and a narrower width as geomagnetic activity strengthens. The peak intensity of SED has maximum values around the equinoxes in their seasonal distribution. Additionally, we observed a solar cycle dependence in the SED distribution, with more events occurring during the solar maximum and declining phases compared to the solar minimum. SED plumes exhibit a sub‐corotation feature with respect to the Earth, characterized by a westward drift speed between 50 and 400 m/s and a duration of 3–10 hr. These information advanced the current understanding of the spatial‐temporal variation of SED characteristics.more » « less
An official website of the United States government

