Climate models project changing patterns of precipitation and increases in temperature that modify soil moisture dynamics. Land use and changing frequency and intensity of precipitation can induce changes in soil structure and rooting abundances at timescales shorter than commonly considered. Soil structure is a critical ecosystem that governs water flow through soil profiles and across landscapes, and can influence weathering rates and thus solute release and soil development. We hypothesize that the altered soil structure and modification of rooting depth distributions linked to land use change can influence soil solute concentrations, and that those shifts in solute release are dependent on patterns of precipitation. We installed suction lysimeters to collect soil water for ~3 y in two grassland regions with distinct mean annual precipitation (800 mm y-1, 1100 mm y-1) in native prairie, agriculture, and post-agriculture land uses at depths of 10, 40, and 120 cm. We linked solute concentrations to soil moisture, aggregate-size distribution, pore geometry, and rooting depth distributions to assess how land use change and the altered rooting abundance it imposes can modify soil structure and hydrologic fluxes, and to infer how soil weathering can shift deep in the subsurface. We reveal how soil moisture residence time and the soil pore network can govern solute production, and the importance of precipitation and thus of soil moisture accumulation over growing seasons for mineral weathering and solute production. Specifically, we find that the solubility potential of multiple weathering products and organic carbon increases with precipitation, dominance of relatively small aggregates at the surface, and fewer coarse roots. Enhanced solute concentrations at depth may also reflect transport down-profile. Our findings reveal unintended consequences of land use change that influence important hydrologic dynamics and nutrient cycling in the vadose zone and how deeply and how persistently unexpected consequences of changes in land cover can propagate.
more »
« less
How moisture availability Across climate zones, landscapes, and pedons governs soil organic C spatial heterogeneity and transport to deep horizons.
Clarifying the mechanisms that control variability in the spatial distribution of soil organic carbon (SOC) is key to accurate estimates of soil C fluxes. Mobile organic C (MOC), here defined as the fraction of SOC that is not strongly bound to mineral surfaces but that can be transported hydrologically as dissolved or particulate organic C, represents the portion of SOC whose residence time can be modulated via movement down profiles and across landscapes. The relationship between the spatial arrangement and turnover time of SOC is especially evident in the widely observed correlation between soil depth and mean residence time; deeper SOC tends to persist for relatively long periods in the profile. Moisture can promote microbial mineralization of SOC to CO2, but water also can transport MOC throughout profiles and landscapes. Controls on the movement of MOC have not been fully elucidated however, and the relationship between MOC and the spatial arrangement of SOC has not been thoroughly explored. Using data collected from five distinct ecosystem types across North America we evaluate the hypothesis that moisture dynamics throughout the soil profile as driven by seasonality, vegetation productivity, and topographical position influence the spatial distribution of MOC, and thus the observed heterogeneity of SOC and its persistence. We demonstrate that, in soils with surplus water availability and structural features that permit sufficient flow, transport drives the accumulation of disproportionately large concentrations of MOC deep in the profile and in downslope topographical positions. Our results further demonstrate that the vertical and lateral transport of MOC is also regulated by variation between energy- and water-limited systems in the amount of seasonally-available water moving through the profile: at times and in places where relatively more surplus water is available, MOC is more readily translocated. Excursions from these patterns of transport and accumulation result from soil textural and structural characteristics that immobilize organic C or inhibit flow. These findings reveal the nuances of how soil moisture dynamics regulate vertical and lateral distributions of MOC, thereby promoting the development of heterogeneous SOC stores as well as deep, relatively persistent SOC pools.
more »
« less
- Award ID(s):
- 2121639
- PAR ID:
- 10505019
- Publisher / Repository:
- AGU abstract
- Date Published:
- Journal Name:
- AGU abstract
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soil respiration that releases CO 2 into the atmosphere roughly balances the net primary productivity and varies widely in space and time. However, predicting its spatial variability, particularly in intensively managed landscapes, is challenging due to a lack of understanding of the roles of soil organic carbon (SOC) redistribution resulting from accelerated soil erosion. Here we simulate the heterotrophic carbon loss (HCL)—defined as microbial decomposition of SOC—with soil transport, SOC surface redistribution, and biogeochemical transformation in an agricultural field. The results show that accelerated soil erosion extends the spatial variation of the HCL, and the mechanical-mixing due to tillage further accentuates the contrast. The peak values of HCL occur in areas where soil transport rates are relatively small. Moreover, HCL has a strong correlation with the SOC redistribution rate rather than the soil transport rate. This work characterizes the roles of soil and SOC transport in restructuring the spatial variability of HCL at high spatio-temporal resolution.more » « less
-
The depth to unweathered bedrock beneath landscapes influences subsurface runoff paths, erosional processes, moisture availability to biota, and water flux to the atmosphere. Here we propose a quantitative model to predict the vertical extent of weathered rock underlying soil-mantled hillslopes. We hypothesize that once fresh bedrock, saturated with nearly stagnant fluid, is advected into the near surface through uplift and erosion, channel incision produces a lateral head gradient within the fresh bedrock inducing drainage toward the channel. Drainage of the fresh bedrock causes weathering through drying and permits the introduction of atmospheric and biotically controlled acids and oxidants such that the boundary between weathered and unweathered bedrock is set by the uppermost elevation of undrained fresh bedrock, Z b . The slow drainage of fresh bedrock exerts a “bottom up” control on the advance of the weathering front. The thickness of the weathered zone is calculated as the difference between the predicted topographic surface profile (driven by erosion) and the predicted groundwater profile (driven by drainage of fresh bedrock). For the steady-state, soil-mantled case, a coupled analytical solution arises in which both profiles are driven by channel incision. The model predicts a thickening of the weathered zone upslope and, consequently, a progressive upslope increase in the residence time of bedrock in the weathered zone. Two nondimensional numbers corresponding to the mean hillslope gradient and mean groundwater-table gradient emerge and their ratio defines the proportion of the hillslope relief that is unweathered. Field data from three field sites are consistent with model predictions.more » « less
-
Abstract Soils store more carbon than other terrestrial ecosystems 1,2 . How soil organic carbon (SOC) forms and persists remains uncertain 1,3 , which makes it challenging to understand how it will respond to climatic change 3,4 . It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss 5–7 . Although microorganisms affect the accumulation and loss of soil organic matter through many pathways 4,6,8–11 , microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes 12,13 . Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved 7,14,15 . Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.more » « less
-
Abstract Soil erosion diminishes agricultural productivity by driving the loss of soil organic carbon (SOC). The ability to predict SOC redistribution is important for guiding sustainable agricultural practices and determining the influence of soil erosion on the carbon cycle. Here, we develop a landscape evolution model that couples soil mixing and transport to predict soil loss and SOC patterns within agricultural fields. Our reduced complexity numerical model requires the specification of only two physical parameters: a plow mixing depth,Lp, and a hillslope diffusion coefficient,D. Using topography as an input, the model predicts spatial patterns of surficial SOC concentrations and complex 3D SOC pedostratigraphy. We use soil cores from native prairies to determine initial SOC‐depth relations and the spatial pattern of remote sensing‐derived SOC in adjacent agricultural fields to evaluate the model predictions. The model reproduces spatial patterns of soil loss comparable to those observed in satellite images. Our results indicate that the distribution of soil erosion and SOC in agricultural fields can be predicted using a simple geomorphic model where hillslope diffusion plays a dominant role. Such predictions can aid estimates of carbon burial and evaluate the potential for future soil loss in agricultural landscapes.more » « less
An official website of the United States government
