We present a practical guide for the analysis of regression discontinuity (RD) designs in biomedical contexts. We begin by introducing key concepts, assumptions, and estimands within both the continuity‐based framework and the local randomization framework. We then discuss modern estimation and inference methods within both frameworks, including approaches for bandwidth or local neighborhood selection, optimal treatment effect point estimation, and robust bias‐corrected inference methods for uncertainty quantification. We also overview empirical falsification tests that can be used to support key assumptions. Our discussion focuses on two particular features that are relevant in biomedical research: (i) fuzzy RD designs, which often arise when therapeutic treatments are based on clinical guidelines, but patients with scores near the cutoff are treated contrary to the assignment rule; and (ii) RD designs with discrete scores, which are ubiquitous in biomedical applications. We illustrate our discussion with three empirical applications: the effect CD4 guidelines for anti‐retroviral therapy on retention of HIV patients in South Africa, the effect of genetic guidelines for chemotherapy on breast cancer recurrence in the United States, and the effects of age‐based patient cost‐sharing on healthcare utilization in Taiwan. Complete replication materials employing publicly available data and statistical software inPython,RandStataare provided, offering researchers all necessary tools to conduct an RD analysis.
more »
« less
Regression Discontinuity Designs
The regression discontinuity (RD) design is one of the most widely used nonexperimental methods for causal inference and program evaluation. Over the last two decades, statistical and econometric methods for RD analysis have expanded and matured, and there is now a large number of methodological results for RD identification, estimation, inference, and validation. We offer a curated review of this methodological literature organized around the two most popular frameworks for the analysis and interpretation of RD designs: the continuity framework and the local randomization framework. For each framework, we discuss three main topics: ( a) designs and parameters, focusing on different types of RD settings and treatment effects of interest; ( b) estimation and inference, presenting the most popular methods based on local polynomial regression and methods for the analysis of experiments, as well as refinements, extensions, and alternatives; and ( c) validation and falsification, summarizing an array of mostly empirical approaches to support the validity of RD designs in practice.
more »
« less
- PAR ID:
- 10417606
- Date Published:
- Journal Name:
- Annual Review of Economics
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 1941-1383
- Page Range / eLocation ID:
- 821 to 851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Modern empirical work in regression discontinuity (RD) designs often employs local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by construction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals in terms of coverage error. We establish valid coverage error expansions for RBC confidence interval estimators and use these results to propose new inference-optimal bandwidth choices for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point estimator is too large when the goal is to construct RBC confidence intervals with the smaller coverage error rate. We further optimize the constant terms behind the coverage error to derive new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions also establish that RBC inference yields higher-order refinements (relative to traditional undersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical findings are illustrated with a Monte Carlo experiment and an empirical application, and the main methodological results are available in R and Stata packages.more » « less
-
In this article, we introduce the Stata (and R) package rdmulti, which consists of three commands (rdmc, rdmcplot, rdms) for analyzing regression-discontinuity (RD) designs with multiple cutoffs or multiple scores. The command rdmc applies to noncumulative and cumulative multicutoff RD settings. It calculates pooled and cutoff-specific RD treatment effects and provides robust biascorrected inference procedures. Postestimation and inference is allowed. The command rdmcplot offers RD plots for multicutoff settings. Finally, the command rdms concerns multiscore settings, covering in particular cumulative cutoffs and two running variable contexts. It also calculates pooled and cutoff-specific RD treatment effects, provides robust bias-corrected inference procedures, and allows for postestimation and inference. These commands use the Stata (and R) package rdrobust for plotting, estimation, and inference. Companion R functions with the same syntax and capabilities are provided.more » « less
-
This article seeks to investigate the impact of aging on functional connectivity across different cognitive control scenarios, particularly emphasizing the identification of brain regions significantly associated with early aging. By conceptualizing functional connectivity within each cognitive control scenario as a graph, with brain regions as nodes, the statistical challenge revolves around devising a regression framework to predict a binary scalar outcome (aging or normal) using multiple graph predictors. Popular regression methods utilizing multiplex graph predictors often face limitations in effectively harnessing information within and across graph layers, leading to potentially less accurate inference and predictive accuracy, especially for smaller sample sizes. To address this challenge, we propose the Bayesian Multiplex Graph Classifier (BMGC). Accounting for multiplex graph topology, our method models edge coefficients at each graph layer using bilinear interactions between the latent effects associated with the two nodes connected by the edge. This approach also employs a variable selection framework on node-specific latent effects from all graph layers to identify influential nodes linked to observed outcomes. Crucially, the proposed framework is computationally efficient and quantifies the uncertainty in node identification, coefficient estimation, and binary outcome prediction. BMGC outperforms alternative methods in terms of the aforementioned metrics in simulation studies. An additional BMGC validation was completed using an fMRI study of brain networks in adults. The proposed BMGC technique identified that sensory motor brain network obeys certain lateral symmetries, whereas the default mode network exhibits significant brain asymmetries associated with early aging.more » « less
-
Summary Randomized experiments have been the gold standard for drawing causal inference. The conventional model-based approach has been one of the most popular methods of analysing treatment effects from randomized experiments, which is often carried out through inference for certain model parameters. In this paper, we provide a systematic investigation of model-based analyses for treatment effects under the randomization-based inference framework. This framework does not impose any distributional assumptions on the outcomes, covariates and their dependence, and utilizes only randomization as the reasoned basis. We first derive the asymptotic theory for $ Z $-estimation in completely randomized experiments, and propose sandwich-type conservative covariance estimation. We then apply the developed theory to analyse both average and individual treatment effects in randomized experiments. For the average treatment effect, we consider model-based, model-imputed and model-assisted estimation strategies, where the first two strategies can be sensitive to model misspecification or require specific methods for parameter estimation. The model-assisted approach is robust to arbitrary model misspecification and always provides consistent average treatment effect estimation. We propose optimal ways to conduct model-assisted estimation using generally nonlinear least squares for parameter estimation. For the individual treatment effects, we propose directly modelling the relationship between individual effects and covariates, and discuss the model’s identifiability, inference and interpretation allowing for model misspecification.more » « less
An official website of the United States government

