skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity
Meaningful and simplified representations of neural activity can yield insights into how and what information is being processed within a neural circuit. However, without labels, finding representations that reveal the link between the brain and behavior can be challenging. Here, we introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE. Our approach combines a generative modeling framework with an instance-specific alignment loss that tries to maximize the representational similarity between transformed views of the input (brain state). These transformed (or augmented) views are created by dropping out neurons and jittering samples in time, which intuitively should lead the network to a representation that maintains both temporal consistency and invariance to the specific neurons used to represent the neural state. Through evaluations on both synthetic data and neural recordings from hundreds of neurons in different primate brains, we show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.  more » « less
Award ID(s):
2039741
PAR ID:
10505218
Author(s) / Creator(s):
Publisher / Repository:
Advances in Neural Information Processing Systems
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity. 
    more » « less
  2. Modern recordings of neural activity provide diverse observations of neurons across brain areas, behavioral conditions, and subjects; presenting an exciting opportunity to reveal the fundamentals of brain-wide dynamics. Current analysis methods, however, often fail to fully harness the richness of such data, as they provide either uninterpretable representations (e.g., via deep networks) or oversimplify models (e.g., by assuming stationary dynamics or analyzing each session independently). Here, instead of regarding asynchronous neural recordings that lack alignment in neural identity or brain areas as a limitation, we leverage these diverse views into the brain to learn a unified model of neural dynamics. Specifically, we assume that brain activity is driven by multiple hidden global sub-circuits. These sub-circuits represent global basis interactions between neural ensembles—functional groups of neurons—such that the time-varying decomposition of these sub-circuits defines how the ensembles’ interactions evolve over time non-stationarily and non-linearly. We discover the neural ensembles underlying non-simultaneous observations, along with their non-stationary evolving interactions, with our new model, CREIMBO (Cross-Regional Ensemble Interactions in Multi-view Brain Observations). CREIMBO identifies the hidden composition of per-session neural ensembles through novel graph-driven dictionary learning and models the ensemble dynamics on a low-dimensional manifold spanned by a sparse time-varying composition of the global sub-circuits. Thus, CREIMBO disentangles overlapping temporal neural processes while preserving interpretability due to the use of a shared underlying sub-circuit basis. Moreover, CREIMBO distinguishes session-specific computations from global (session-invariant) ones by identifying session covariates and variations in sub-circuit activations. We demonstrate CREIMBO’s ability to recover true components in synthetic data, and uncover meaningful brain dynamics in human high-density electrode recordings, including cross-subject neural mechanisms as well as inter- vs. intra-region dynamical motifs. Furthermore, using mouse whole-brain recordings, we show CREIMBO’s ability to discover dynamical interactions that capture task and behavioral variables and meaningfully align with the biological importance of the brain areas they represent 
    more » « less
  3. Larvae of the fruit flyDrosophila melanogasterare a powerful study case for understanding the neural circuits underlying behavior. Indeed, the numerical simplicity of the larval brain has permitted the reconstruction of its synaptic connectome, and genetic tools for manipulating single, identified neurons allow neural circuit function to be investigated with relative ease and precision. We focus on one of the most complex neurons in the brain of the larva (of either sex), the GABAergic anterior paired lateral neuron (APL). Using behavioral and connectomic analyses, optogenetics, Ca2+imaging, and pharmacology, we study how APL affects associative olfactory memory. We first provide a detailed account of the structure, regional polarity, connectivity, and metamorphic development of APL, and further confirm that optogenetic activation of APL has an inhibiting effect on its main targets, the mushroom body Kenyon cells. All these findings are consistent with the previously identified function of APL in the sparsening of sensory representations. To our surprise, however, we found that optogenetically activating APL can also have a strong rewarding effect. Specifically, APL activation together with odor presentation establishes an odor-specific, appetitive, associative short-term memory, whereas naive olfactory behavior remains unaffected. An acute, systemic inhibition of dopamine synthesis as well as an ablation of the dopaminergic pPAM neurons impair reward learning through APL activation. Our findings provide a study case of complex circuit function in a numerically simple brain, and suggest a previously unrecognized capacity of central-brain GABAergic neurons to engage in dopaminergic reinforcement. SIGNIFICANCE STATEMENTThe single, identified giant anterior paired lateral (APL) neuron is one of the most complex neurons in the insect brain. It is GABAergic and contributes to the sparsening of neuronal activity in the mushroom body, the memory center of insects. We provide the most detailed account yet of the structure of APL in larvalDrosophilaas a neurogenetically accessible study case. We further reveal that, contrary to expectations, the experimental activation of APL can exert a rewarding effect, likely via dopaminergic reward pathways. The present study both provides an example of unexpected circuit complexity in a numerically simple brain, and reports an unexpected effect of activity in central-brain GABAergic circuits. 
    more » « less
  4. Understanding the intrinsic patterns of human brain is important to make inferences about the mind and brain-behavior association. Electrophysiological methods (i.e. MEG/EEG) provide direct measures of neural activity without the effect of vascular confounds. The blood oxygenated level-dependent (BOLD) signal of functional MRI (fMRI) reveals the spatial and temporal brain activity across different brain regions. However, it is unclear how to associate the high temporal resolution Electrophysiological measures with high spatial resolution fMRI signals. Here, we present a novel interpretable model for coupling the structure and function activity of brain based on heterogeneous contrastive graph representation. The proposed method is able to link manifest variables of the brain (i.e. MEG, MRI, fMRI and behavior performance) and quantify the intrinsic coupling strength of different modal signals. The proposed method learns the heterogeneous node and graph representations by contrasting the structural and temporal views through the mind to multimodal brain data. The first experiment with 1200 subjects from Human connectome Project (HCP) shows that the proposed method outperforms the existing approaches in predicting individual gender and enabling the location of the importance of brain regions with sex difference. The second experiment associates the structure and temporal views between the low-level sensory regions and high-level cognitive ones. The experimental results demonstrate that the dependence of structural and temporal views varied spatially through different modal variants. The proposed method enables the heterogeneous biomarkers explanation for different brain measurements. 
    more » « less
  5. Autism spectrum disorder is increasingly understood to be based on atypical signal transfer among multiple interconnected networks in the brain. Relative temporal patterns of neural activity have been shown to underlie both the altered neurophysiology and the altered behaviors in a variety of neurogenic disorders. We assessed brain network dynamics variability in autism spectrum disorders (ASD) using measures of synchronization (phase‐locking) strength, and timing of synchronization and desynchronization of neural activity (desynchronization ratio) across frequency bands of resting‐state electroencephalography (EEG). Our analysis indicated that frontoparietal synchronization is higher in ASD but with more short periods of desynchronization. It also indicates that the relationship between the properties of neural synchronization and behavior is different in ASD and typically developing populations. Recent theoretical studies suggest that neural networks with a high desynchronization ratio have increased sensitivity to inputs. Our results point to the potential significance of this phenomenon to the autistic brain. This sensitivity may disrupt the production of an appropriate neural and behavioral responses to external stimuli. Cognitive processes dependent on the integration of activity from multiple networks maybe, as a result, particularly vulnerable to disruption.Autism Res2020, 13: 24–31. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. Lay SummaryParts of the brain can work together by synchronizing the activity of the neurons. We recorded the electrical activity of the brain in adolescents with autism spectrum disorder and then compared the recording to that of their peers without the diagnosis. We found that in participants with autism, there were a lot of very short time periods of non‐synchronized activity between frontal and parietal parts of the brain. Mathematical models show that the brain system with this kind of activity is very sensitive to external events. 
    more » « less