skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scale-free behavioral dynamics directly linked with scale-free cortical dynamics
Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here, we show that scale-free dynamics of mouse behavior and neurons in the visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.  more » « less
Award ID(s):
1912352
PAR ID:
10490571
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Achieving targeted perturbations of neural activity is essential for dissecting the causal architecture of brain circuits. A crucial challenge in targeted manipulation experiments is the identification ofhigh efficacyperturbation sites whose stimulation exerts desired effects, currently done with costly trial-and-error procedures. Can one predict stimulation effects solely based on observations of the circuit activity, in the absence of perturbation? We answer this question in dissociated neuronal cultures on High-Density Microelectrode Arrays (HD-MEAs), which, compared toin vivopreparations, offer a controllablein vitroplatform that enables precise stimulation and full access to network dynamics. We first reconstruct theperturbome- the full map of network responses to focal electrical stimulation - by sequentially activating individual single sites and quantifying their network-wide effects. The measured perturbome patterns cluster into functional modules, with limited spread across clusters. We then demonstrate that the perturbome can be predicted from spontaneous activity alone. Using short baseline recordings in the absence of perturbations, we estimate Effective Connectivity (EC) and show that it predicts the spatial organization of the perturbome, including spatial clusters and local connectivity. Our results demonstrate that spontaneous dynamics encode the latent causal structure of neural circuits and that EC metrics can serve as effective, model-free proxies for stimulation outcomes. This framework enables data-driven targeting and causal inferencein vitro, with potential applications to more complex preparations such as human iPSC-derived neurons and brain organoids, with implications for both basic research and therapeutic strategies targeting neurological disorders. Significance StatementNeuronal cultures are increasingly used as controllable platforms to study neuronal network dynamics, neuromodulation, and brain-inspired therapies. To fully exploit their potential, we need robust methods to probe and interpret causal interactions. Here, we develop a framework to reconstruct the perturbome—the network-wide map of responses to localized electrical stimulation—and show that it can be predicted from spontaneous activity alone. Using simple, model-free metrics of Effective Connectivity, we reveal that ongoing activity encodes causal structure and provides reliable proxies for stimulation outcomes. This validates EC as a practical measure of causal influence in vitro. Our methodology refines the use of neuronal cultures for brain-on-a-chip approaches, and paves the way for data-driven neuromodulation strategies in human stem cell–derived neurons and brain organoids. 
    more » « less
  2. Fundamental principles underlying computation in multi-scale brain networks illustrate how multiple brain areas and their coordinated activity give rise to complex cognitive functions. Whereas brain activity has been studied at the micro- to meso-scale to reveal the connections between the dynamical patterns and the behaviors, investigations of neural population dynamics are mainly limited to single-scale analysis. Our goal is to develop a cross-scale dynamical model for the collective activity of neuronal populations. Here we introduce a bio-inspired deep learning approach, termed NeuroBondGraph Network (NBGNet), to capture cross-scale dynamics that can infer and map the neural data from multiple scales. Our model not only exhibits more than an 11-fold improvement in reconstruction accuracy, but also predicts synchronous neural activity and preserves correlated low-dimensional latent dynamics. We also show that the NBGNet robustly predicts held-out data across a long time scale (2 weeks) without retraining. We further validate the effective connectivity defined from our model by demonstrating that neural connectivity during motor behaviour agrees with the established neuroanatomical hierarchy of motor control in the literature. The NBGNet approach opens the door to revealing a comprehensive understanding of brain computation, where network mechanisms of multi-scale activity are critical. 
    more » « less
  3. Meaningful and simplified representations of neural activity can yield insights into how and what information is being processed within a neural circuit. However, without labels, finding representations that reveal the link between the brain and behavior can be challenging. Here, we introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE. Our approach combines a generative modeling framework with an instance-specific alignment loss that tries to maximize the representational similarity between transformed views of the input (brain state). These transformed (or augmented) views are created by dropping out neurons and jittering samples in time, which intuitively should lead the network to a representation that maintains both temporal consistency and invariance to the specific neurons used to represent the neural state. Through evaluations on both synthetic data and neural recordings from hundreds of neurons in different primate brains, we show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior. 
    more » « less
  4. Inferring the intentions and emotions of others from behavior is crucial for social cognition. While neuroimaging studies have identified brain regions involved in social inference, it remains unknown whether performing social inference is an abstract computation that generalizes across different stimulus categories or is specific to certain stimulus domain. We recorded single-neuron activity from the medial temporal lobe (MTL) and the medial frontal cortex (MFC) in neurosurgical patients performing different types of inferences from images of faces, hands, and natural scenes. Our findings indicate distinct neuron populations in both regions encoding inference type for social (faces, hands) and nonsocial (scenes) stimuli, while stimulus category was itself represented in a task-general manner. Uniquely in the MTL, social inference type was represented by separate subsets of neurons for faces and hands, suggesting a domain-specific representation. These results reveal evidence for specialized social inference processes in the MTL, in which inference representations were entangled with stimulus type as expected from a domain-specific process. 
    more » « less
  5. Abstract Understanding how cortical circuits generate complex behavior requires investigating the cell types that comprise them. Functional differences across pyramidal neuron (PyN) types have been observed within cortical areas, but it is not known whether these local differences extend throughout the cortex, nor whether additional differences emerge when larger-scale dynamics are considered. We used genetic and retrograde labeling to target pyramidal tract, intratelencephalic and corticostriatal projection neurons and measured their cortex-wide activity. Each PyN type drove unique neural dynamics, both at the local and cortex-wide scales. Cortical activity and optogenetic inactivation during an auditory decision task revealed distinct functional roles. All PyNs in parietal cortex were recruited during perception of the auditory stimulus, but, surprisingly, pyramidal tract neurons had the largest causal role. In frontal cortex, all PyNs were required for accurate choices but showed distinct choice tuning. Our results reveal that rich, cell-type-specific cortical dynamics shape perceptual decisions. 
    more » « less