skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: OpenVP: A Customizable Visual Programming Environment for Robotics Applications
Authored robotics applications have a diverse set of requirements for their authoring interfaces, being dependent on the underlying architecture of the program, the capabilities of the programmers and engineers using them, and the capabilities of the robot. Visual programming approaches have long been favored for both novice-level accessibility and clear graphical representations, but current tools are limited in their customizability and ability to be integrated holistically into larger design interfaces. OpenVP attempts to address this by providing a highly configurable and customizable component library that can be integrated easily into other modern web-based applications.  more » « less
Award ID(s):
1925043 2026478
PAR ID:
10505253
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400703225
Page Range / eLocation ID:
944 to 948
Format(s):
Medium: X
Location:
Boulder CO USA
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a growing need for next-generation science gateways to increase the accessibility of data sets and cloud computing resources using latest technologies. Most science gateways today are built for specific purposes with pre-defined workflows, user interfaces, and fixed computing resources. There is a need to modernize them with middleware that can provide ‘plug in’ support to programmatically increase their extensibility and scalability to meet users’ growing needs. In this paper, we propose a novel middleware that can be integrated into science gate ways using a “bring-your-own” plug-in management approach. This approach features microservice architectures to decouple applications, and allows users (i.e., administrators, developers, researchers) to customize and incorporate domain-specific components in an existing science gateway. We detail the application programming interfaces in our middleware for creation of end-to end pipelines with diverse infrastructure, customized processes, detailed monitoring and flexible programmability for a scientific domain. We also demonstrate via a OnTimeRecommend case study on how our “bring-your-own” approach can be seamlessly integrated by a science gateway administrator/developer using a web application. 
    more » « less
  2. We have developed a low-cost mechanical shutter driver with integrated arbitrary waveform generation for optical switching and control using a programmable system-on-chip device. This microcontroller-based device with configurable digital and analog blocks is readily programmed using free software, allowing for easy customization for a variety of applications. Additional digital and analog outputs with arbitrary timings can be used to control a variety of devices, such as additional shutters, acousto-optical modulators, or camera trigger pulses, for complete control and imaging of laser light. Utilizing logic-level control signals, this device can be readily integrated into existing computer control and data acquisition systems for expanded hardware capabilities. 
    more » « less
  3. Blockchain technology continues to grow and extend into more areas with great success, which highlights the importance of studying the fields that have been, and have yet to be, fundamentally changed by its entrance. In particular, blockchain technology has been shown to be increasingly relevant in the field of transportation systems. More studies continue to be conducted relating to both fields of study and their integration. It is anticipated that their existing relationships will be greatly improved in the near future, as more research is conducted and applications are better understood. Because blockchain technology is still relatively new as compared to older, more well-used methods, many of its future capabilities are still very much unknown. However, before they can be discovered, we need to fully understand past and current developments, as well as expert observations, in applying blockchain technology to the autonomous vehicle field. From an understanding and discussion of the current and potential future capabilities of blockchain technology, as provided through this survey, advancements can be made to create solutions to problems that are inherent in autonomous vehicle systems today. The focus of this paper is mainly on the potential applications of blockchain in the future of transportation systems to be integrated with connected and autonomous vehicles (CAVs) to provide a broad overview on the current related literature and research studies in this field. 
    more » « less
  4. Game map interfaces provide an alternative perspective on the worlds players inhabit.compared to navigation applications popular in day-to-day life, game maps have different affordances to match players' situated goals. To contextualize and understand these differences and how they developed, we present a historical chronicle of game map interfaces. Starting from how games came to involve maps, we trace how maps are first separate from the game, becoming more and more integrated into play until converging in smartphone-style interfaces. We synthesize several game history texts with critical engagement with 123 key games to develop this map-focused chronicle, from which we highlight trends and opportunities for future map designs. Our work contributes a record of trends in game map interfaces that can serve as a source of reference and inspiration to game designers, digital physical-world map designers, and game scholars. 
    more » « less
  5. Integrated optical phased arrays (OPAs) have emerged as a promising technology for various applications due to their ability to dynamically control free-space optical beams in a compact and non-mechanical manner. While integrated OPAs have traditionally focused on the infrared spectrum, advancements in visible-light integrated OPAs have been relatively limited despite their potential benefits for applications such as displays, 3D printing, trapped-ion quantum systems, underwater communications, and optogenetics. Moreover, integrated visible-light grating-based optical antennas, one of the crucial devices that forms a visible-light integrated OPA, have been relatively underexplored, especially for more advanced designs. In this paper, we address this gap by providing a thorough explanation of the design principles for integrated visible-light grating-based antennas and applying them to design and experimentally demonstrate five different antennas with varying advanced capabilities, including the first visible-light unidirectionally-emitting grating-based antennas for integrated OPAs. Specifically, we develop and experimentally demonstrate integrated visible-light exponentially-emitting single-layer, uniformly-emitting single-layer, exponentially-emitting dual-layer, uniformly-emitting dual-layer, and unidirectionally-emitting dual-layer grating-based antennas. This work aims to provide a thorough design guide for integrated visible-light grating-based antennas, facilitating future widespread use of integrated OPAs for new and emerging visible-light applications. 
    more » « less