skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on March 11, 2025

Title: OpenVP: A Customizable Visual Programming Environment for Robotics Applications
Authored robotics applications have a diverse set of requirements for their authoring interfaces, being dependent on the underlying architecture of the program, the capabilities of the programmers and engineers using them, and the capabilities of the robot. Visual programming approaches have long been favored for both novice-level accessibility and clear graphical representations, but current tools are limited in their customizability and ability to be integrated holistically into larger design interfaces. OpenVP attempts to address this by providing a highly configurable and customizable component library that can be integrated easily into other modern web-based applications.  more » « less
Award ID(s):
1925043 2026478
NSF-PAR ID:
10505253
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
944 to 948
Format(s):
Medium: X
Location:
Boulder CO USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants—specifically those that interface with skeletal muscle—which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the “bio‐amplification” capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state‐of‐the‐art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long‐term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day‐to‐day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.

     
    more » « less
  2. Recent developments have shown that spatial structures devised from origami or low-dimensional rigid linkage mechanisms can be used to construct deployable arrays for antennas or satellites. Yet, some of these structures are limited to deployment in fixed planes or directions, or do not define straightforward processes for deployment. To surmount these limitations, this research introduces a reconfigurable single-degree-of-freedom spatial structure devised from a Kresling-inspired mechanism with integrated scissor arms. Analytical models are constructed to demonstrate compaction, deployment, and acoustic wave guiding capabilities of the proposed, modular structure. The influences of the geometric parameters on compaction, deployment, and scissor arm orientation are also explored, and reveal modular scissor arm behavior and large deployment-to-compaction area ratios. The acoustic wave guiding capabilities of the Kresling-inspired scissor structure are exemplified via a structure using spiral scissor arms, thereby proposing a novel concept for the construction of deployable wave guiding arrays. Experimental studies with model arrays complement the analytical findings of both the geometric reconfigurations and wave guiding functionality. Finally, out-of-plane configurations are depicted to demonstrate the three-dimensional shape change capabilities of the Kresling-inspired scissor structure. The results in this study encourage broader exploration of the interfaces between origami inspired structures and rigid linkage mechanisms.

     
    more » « less
  3. Abstract

    Developing promising solid‐state Li batteries with capabilities of high current densities have been a major challenge partly due to large interfacial resistance across the electrode/electrolyte interfaces. This work represents an integrated network of self‐standing polymer electrolyte and active electrode materials with in situ UV cross‐linking. This method provides a uniform morphology of composite polymer electrolyte with low thickness of 20–40 μm. This modification leads to promising cycling results with 85% specific capacity retention in Li||LiFePO4cell over 100 cycles at high current densities of 170 mA g−1(~25 μA cm−2, 1 C).By applying this method, the interfacial resistance decreases as high as seven folds compared to noncross‐linked interfaces. The following work introduce a facile and cost‐effective method in developing fast‐charging self‐standing polymer batteries with enhanced electrochemical properties.

    image

     
    more » « less
  4. The computational modeling of electrochemical interfaces and their applications in electrocatalysis has attracted great attention in recent years. While tremendous progress has been made in this area, however, the accurate atomistic descriptions at the electrode/electrolyte interfaces remain a great challenge. The Computational Hydrogen Electrode (CHE) method and continuum modeling of the solvent and electrolyte interactions form the basis for most of these methodological developments. Several posterior corrections have been added to the CHE method to improve its accuracy and widen its applications. The most recently developed grand canonical potential approaches with the embedded diffuse layer models have shown considerable improvement in defining interfacial interactions at electrode/electrolyte interfaces over the state-of-the-art computational models for electrocatalysis. In this Review, we present an overview of these different computational models developed over the years to quantitatively probe the thermodynamics and kinetics of electrochemical reactions in the presence of an electrified catalyst surface under various electrochemical environments. We begin our discussion by giving a brief picture of the different continuum solvation approaches, implemented within the ab initio method to effectively model the solvent and electrolyte interactions. Next, we present the thermodynamic and kinetic modeling approaches to determine the activity and stability of the electrocatalysts. A few applications to these approaches are also discussed. We conclude by giving an outlook on the different machine learning models that have been integrated with the thermodynamic approaches to improve their efficiency and widen their applicability.

     
    more » « less
  5. Abstract

    Stabilizing liquid–liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water‐oil interface is presented using the morphological transitions that occur during the self‐assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small‐angle X‐ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water‐oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid‐in‐liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid–liquid interfaces not only offers unprecedented opportunities for fine‐tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self‐healing, and porosity, which could have significant implications for various industries.

     
    more » « less