ABSTRACT Understanding the effects driven by rotation in the solar convection zone is essential for many problems related to solar activity, such as the formation of differential rotation, meridional circulation, and others. We analyse realistic 3D radiative hydrodynamics simulations of solar subsurface dynamics in the presence of rotation in a local domain 80 Mm wide and 25 Mm deep, located at 30° latitude. The simulation results reveal the development of a shallow 10 Mm deep substructure of the near-surface shear layer (NSSL), characterized by a strong radial rotational gradient and self-organized meridional flows. This shallow layer (‘leptocline’) is located in the hydrogen ionization zone associated with enhanced anisotropic overshooting-type flows into a less unstable layer between the H and He ii ionization zones. We discuss current observational evidence of the presence of the leptocline and show that the radial variations of the differential rotation and meridional flow profiles obtained from the simulations in this layer qualitatively agree with helioseismic observations.
more »
« less
Assessing the Observability of Deep Meridional Flow Cells in the Solar Interior
Abstract Meridional circulation regulates the Sun’s interior dynamics and magnetism. While it is well accepted that meridional flows are poleward at the Sun’s surface, helioseismic observations have yet to provide a definitive answer for the depth at which those flows return to the equator, or the number of circulation cells in depth. Here, we explore the observability of multiple circulation cells stacked in radius. Specifically, we examine the seismic signature of several meridional flow profiles by convolving time–distance averaging kernels with mean flows obtained from a suite of 3D hydrodynamic simulations. At mid and high latitudes, we find that weak flow structures in the deep convection zone can be obscured by signals from the much stronger surface flows. This contamination of 1–2 m s−1is caused by extended side lobes in the averaging kernels, which produce a spurious equatorward signal with flow speeds that are 1 order of magnitude stronger than the original flow speeds in the simulations. At low latitudes, the flows in the deep layers of the simulations are stronger (>2 m s−1) and multiple cells across the convection zone can produce a sufficiently strong signal to survive the convolution process. Now that meridional flows can be measured over two decades of data, the uncertainties arising from convective noise have fallen to a level where they are comparable in magnitude to the systematic biases caused by nonlocal features in the averaging kernels. Hence, these systematic errors are beginning to influence current helioseismic deductions and need broader consideration.
more »
« less
- Award ID(s):
- 2202253
- PAR ID:
- 10505357
- Publisher / Repository:
- The American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 961
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 78
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Response of Meridional Wind to Greenhouse Gas Forcing, Arctic Sea-Ice Loss, and Arctic AmplificationAbstract Under increasing greenhouse gases, the Arctic warms about twice as fast as elsewhere, known as Arctic amplification (AA). AA weakens meridional temperature gradients and is hypothesized to weaken zonal wind and cause wavier circulation with stronger meridional wind ( υ ) over northern mid-to-high latitudes. Here model simulations are analyzed to examine the υ response to increased CO 2 and AA alone. Total υ changes are found to be dominated by the effect of increased CO 2 without AA, with a zonal wavenumber-4 (wavenumber-3) change pattern over the northern (southern) extratropics that generally enhances current υ and results partly from changes in zonal temperature gradients. The extratropical υ change patterns are quasi-barotropic and are more pronounced during boreal winter. The CO 2 forcing also causes baroclinic υ changes over the tropics tied to convection changes. The impact of AA on υ is mainly over the northern extratropics and is opposite to the effect of increased CO 2 but with smaller magnitude. An eastward shift (∼5° longitude) and an amplitude increase (∼1 m s −1 ) in the climatology of the northerlies over Europe caused mainly by CO 2 forcing contribute to the drying in southern Europe, while both AA and CO 2 forcing enhance the climatology of the northerlies over East Asia. Over the northern mid-to-high latitudes, Arctic sea ice loss and AA enhance the land–ocean thermal contrast in winter, while increased CO 2 alone weakens it, resulting in opposite changes in zonal temperature gradients and thus υ . Different warming rates over land and ocean also contribute to the intermodel spread in υ response patterns among climate models. Significance Statement Meridional wind ( υ ) greatly contributes to thermal and moisture advection due to large meridional gradients in these fields. It is hypothesized that the enhanced Arctic warming under anthropogenic global warming could weaken meridional temperature gradients, decelerate westerly jets, and cause wavier circulation with stronger υ over northern extratropics. Using novel climate model simulations, we found that the effect of increased CO 2 without AA determines the total υ changes. AA generally weakens the climatological υ , contrary to the direct effect of increased CO 2 . The υ changes are small relative to its climatology but may have large impacts on regional climate over central Europe, East Asia, and interior North America. More research is needed to examine the mechanisms causing regional υ changes.more » « less
-
Mandrini, Cristina H (Ed.)Abstract The Mt. Wilson Observatory archive of observations of solar disk magnetic fields, Doppler velocities, and spectral line intensities is a resource for studying the Sun’s state from 1967 to 2013. Instrument changes/upgrades during this time must be considered when interpreting this record. Portions of this record have been previously released. This publication documents the data record in order to allow its independent interpretation. The archive is available through two directory trees which can be accessed athttp://sha.stanford.edu/mwo/msm.html. The calibration of the observations is impacted by the solar surface convective flows, which produce offsets for both differential rotation and meridional circulation functions. The effects of these offsets have been reduced in this and other publications by temporal averaging.more » « less
-
The observational absence of giant convection cells near the Sun’s outer surface is a long-standing conundrum for solar modelers. We herein propose an explanation. Rotation strongly influences the internal dynamics, leading to suppressed convective velocities, enhanced thermal-transport efficiency, and (most significantly) relatively smaller dominant length scales. We specifically predict a characteristic convection length scale of roughly 30-Mm throughout much of the convection zone, implying weak flow amplitudes at 100- to 200-Mm giant cells scales, representative of the total envelope depth. Our reasoning is such that Coriolis forces primarily balance pressure gradients (geostrophy). Background vortex stretching balances baroclinic torques. Both together balance nonlinear advection. Turbulent fluxes convey the excess part of the solar luminosity that radiative diffusion cannot. We show that these four relations determine estimates for the dominant length scales and dynamical amplitudes strictly in terms of known physical quantities. We predict that the dynamical Rossby number for convection is less than unity below the near-surface shear layer, indicating rotational constraint.more » « less
-
Abstract Cyclical variations of the solar magnetic fields, and hence the level of solar activity, are among the top interests of space weather research. Surface flows in global-scale, in particular differential rotation and meridional flows, play important roles in the solar dynamo that describes the origin and variation of solar magnetic fields. In principle, differential rotation is the fundamental cause of dipole field formation and emergence, and meridional flows are the surface component of a longitudinal circulation that brings decayed field from low latitudes to polar regions. Such flows are key inputs and constraints of observational and modeling studies of solar cycles. Here, we present two methods, local correlation tracking (LCT) and machine learning-based self-supervised optical flow methods, to measure differential rotation and meridional flows from full-disk magnetograms that probe the photosphere and $$\text{H}\alpha$$ H α images that probe the chromosphere, respectively. LCT is robust in deriving photospheric flows using magnetograms. However, we found that it failed to trace flows using time-sequence $$\text{H}\alpha $$ H α data because of the strong dynamics of traceable features. The optical flow methods handle $$\text{H}\alpha $$ H α data better to measure the chromospheric flow fields. We found that the differential rotation from photospheric and chromospheric measurements shows a strong correlation with a maximum of $$2.85~\upmu \text{rad}\,\text{s}^{-1}$$ 2.85 μrad s − 1 at the equator and the accuracy holds until $$60^{\circ }$$ 60 ∘ for the MDI and $$\text{H}\alpha$$ H α , $$75^{\circ }$$ 75 ∘ for the HMI dataset. On the other hand, the meridional flow deduced from the chromospheric measurement shows a similar trend as the concurrent photospheric measurement within $$60^{\circ }$$ 60 ∘ with a maximum of $$20~\text{m}\,\text{s}^{-1}$$ 20 m s − 1 at $$40^{\circ }$$ 40 ∘ in latitude. Furthermore, the measurement uncertainties are discussed.more » « less