skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Study of Global Photospheric and Chromospheric Flows Using Local Correlation Tracking and Machine Learning Methods I: Methodology and Uncertainty Estimates
Abstract Cyclical variations of the solar magnetic fields, and hence the level of solar activity, are among the top interests of space weather research. Surface flows in global-scale, in particular differential rotation and meridional flows, play important roles in the solar dynamo that describes the origin and variation of solar magnetic fields. In principle, differential rotation is the fundamental cause of dipole field formation and emergence, and meridional flows are the surface component of a longitudinal circulation that brings decayed field from low latitudes to polar regions. Such flows are key inputs and constraints of observational and modeling studies of solar cycles. Here, we present two methods, local correlation tracking (LCT) and machine learning-based self-supervised optical flow methods, to measure differential rotation and meridional flows from full-disk magnetograms that probe the photosphere and $$\text{H}\alpha$$ H α images that probe the chromosphere, respectively. LCT is robust in deriving photospheric flows using magnetograms. However, we found that it failed to trace flows using time-sequence $$\text{H}\alpha $$ H α data because of the strong dynamics of traceable features. The optical flow methods handle $$\text{H}\alpha $$ H α data better to measure the chromospheric flow fields. We found that the differential rotation from photospheric and chromospheric measurements shows a strong correlation with a maximum of $$2.85~\upmu \text{rad}\,\text{s}^{-1}$$ 2.85 μrad s − 1 at the equator and the accuracy holds until $$60^{\circ }$$ 60 ∘ for the MDI and $$\text{H}\alpha$$ H α , $$75^{\circ }$$ 75 ∘ for the HMI dataset. On the other hand, the meridional flow deduced from the chromospheric measurement shows a similar trend as the concurrent photospheric measurement within $$60^{\circ }$$ 60 ∘ with a maximum of $$20~\text{m}\,\text{s}^{-1}$$ 20 m s − 1 at $$40^{\circ }$$ 40 ∘ in latitude. Furthermore, the measurement uncertainties are discussed.  more » « less
Award ID(s):
1927578
PAR ID:
10419498
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Solar Physics
Volume:
298
Issue:
5
ISSN:
0038-0938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.Light bridges are bright, long, and narrow features that are typically connected to the formation or decay processes of sunspots and pores. Aims.The interaction of magnetic fields and plasma flows is investigated in the trailing part of an active region, where pores and magnetic knots evolve into a complex sunspot. The goal is to identify the photospheric and chromospheric processes, which transform the mainly vertical magnetic fields of pores into a sunspot with multiple umbral cores, light bridges, and rudimentary penumbrae. Methods.Conducting observations with a broad variety of telescopes and instruments provides access to different atmospheric layers and the changing morphology of features connected to strong magnetic fields. While the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) provides full-disk continuum images and line-of-sight magnetograms, the fine structure and flows around a pore can be deduced from high-resolution observations in various wavelengths as provided by theGoodeSolar Telescope (GST) at the Big Bear Solar Observatory (BBSO). Horizontal proper motions are evaluated applying local correlation tracking (LCT) to the available time series, whereas the connectivity of sunspot features can be established using the background-subtracted activity maps (BaSAMs). Results.Photospheric flow maps indicate radial outflows, where the light bridge connects to the surrounding granulation, whereas inflows are present at the border of the pores. In contrast, the chromospheric flow maps show strong radial outflows at superpenumbral scales, even in the absence of a penumbra in the photosphere. The region in between the two polarities is characterized by expanding granules creating strong divergence centers. Variations in BaSAMs follow locations of significant and persistent changes in and around pores. The resulting maps indicate low variations along the light bridge, as well as thin hairlines connecting the light bridge to the pores and strong variations at the border of pores. Various BaSAMs demonstrate the interaction of pores with the surrounding supergranular cell. The Hαline-of-sight velocity maps provide further insights into the flow structure, with twisted motions along some of the radial filaments around the pore with the light bridge. Furthermore, flows along filaments connecting the two polarities of the active region are pronounced in the line-of-sight velocity maps. Conclusions.The present observations reveal that even small-scale changes of plasma motions in and around pores are conducive to transform pores into sunspots. In addition, chromospheric counterparts of penumbral filaments appear much earlier than the penumbral filaments in the photosphere. Penumbra formation is aided by a stable magnetic feature that anchors the advection of magnetic flux and provides a connection to the surrounding supergranular cell, whereas continuously emerging flux and strong light bridges are counteragents that affect the appearance and complexity of sunspots and their penumbrae. 
    more » « less
  2. Abstract We used 29 high-resolution line-of-sight magnetograms acquired with the Goode Solar Telescope (GST) in a quiet-Sun area to extrapolate a series of potential field configurations and study their time variations. The study showed that there are regions that consistently exhibit changes in loop connectivity, whereas other vast areas do not show such changes. Analysis of the topological features of the potential fields indicates that the photospheric footprint of the separatrix between open- and closed-loop systems closely matches the roots of rapid blue- and redshifted excursions, which are disk counterparts of type II spicules. There is a tendency for the footpoints of the observed Hαfeatures to be cospatial with the footpoints of the loops that most frequently change their connectivity, while the area occupied by the open fields that did not show any significant and persistent connectivity changes is void of prominent jet and spicular activity. We also detected and tracked magnetic elements using the Southwest Automatic Magnetic Identification Suite and GST magnetograms, which allowed us to construct artificial magnetograms and calculate the corresponding potential field configurations. Analysis of the artificial data showed tendencies similar to those found for the observed data. The present study suggests that a significant amount of chromospheric activity observed in the far wings of the Hαspectral line may be generated by reconnecting closed-loop systems and canopy fields consisting of “open” field lines. 
    more » « less
  3. ABSTRACT Understanding the effects driven by rotation in the solar convection zone is essential for many problems related to solar activity, such as the formation of differential rotation, meridional circulation, and others. We analyse realistic 3D radiative hydrodynamics simulations of solar subsurface dynamics in the presence of rotation in a local domain 80 Mm wide and 25 Mm deep, located at 30° latitude. The simulation results reveal the development of a shallow 10 Mm deep substructure of the near-surface shear layer (NSSL), characterized by a strong radial rotational gradient and self-organized meridional flows. This shallow layer (‘leptocline’) is located in the hydrogen ionization zone associated with enhanced anisotropic overshooting-type flows into a less unstable layer between the H and He ii ionization zones. We discuss current observational evidence of the presence of the leptocline and show that the radial variations of the differential rotation and meridional flow profiles obtained from the simulations in this layer qualitatively agree with helioseismic observations. 
    more » « less
  4. Abstract Minifilament eruptions producing small jets and microflares have mostly been studied based on coronal observations at extreme-ultraviolet and X-ray wavelengths. This study presents chromospheric plasma diagnostics of a quiet-Sun minifilament of size ∼ 2″ × 5″ with a sigmoidal shape and an associated microflare observed on 2021 August 7 17:00 UT using high temporal and spatial resolution spectroscopy from the Fast Imaging Solar Spectrograph (FISS) and high-resolution magnetograms from the Near InfraRed Imaging Spectropolarimeter (NIRIS) installed on the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory. Using FISS Hαand Caii8542 Å line spectra at the time of the minifilament activation we determined a temperature of 8600 K and a nonthermal speed of 7.9 km s−1. During the eruption, the minifilament was no longer visible in the Caii8542 Å line, and only the Hαline spectra were used to find the temperature of the minifilament, which reached 1.2 × 104K and decreased afterward. We estimated thermal energy of 3.6 × 1024erg from the maximum temperature and kinetic energy of 2.6 × 1024erg from the rising speed (18 km s−1) of the minifilament. From the NIRIS magnetograms we found small-scale flux emergence and cancellation coincident with the minifilament eruption, and the magnetic energy change across the conjugate footpoints reaches 7.2 × 1025erg. Such spectroscopic diagnostics of the chromospheric minifilament complement earlier studies of minifilament eruptions made using coronal images. 
    more » « less
  5. Abstract Plumes are bright structures in coronal holes extending from the solar surface into the corona and are considered as a possible source of the solar wind. Plumes are thought to be rooted in strong unipolar photospheric flux patches (network/plage region). The magnetic activities at the base of plumes may play a crucial role in producing outflows and propagating disturbances (PDs). However, the role of photospheric/chromospheric activities (e.g., jets/spicules) at the base of plumes and their connection to PDs is poorly understood. Using high-resolution observations of a plume taken on 2020 July 23 with the 1.6 m Goode Solar Telescope (GST), Interface Region Imaging Spectrograph (IRIS), and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we analyzed chromospheric/transition region activities at the base of the plume and their connection to outflows/PDs in the plume. The GST Visible Imaging Spectrometer images reveal repetitive spicules with blueshifted emission (pseudo-Doppler maps) at the plume’s footpoint. In addition, the photospheric magnetograms provide evidence of mixed polarities at the base of the plume. The IRIS Mg ii k Dopplergrams show strong blueshifted emission (∼50 km s −1 ) and a high brightness temperature (Mg ii k2 line) at the footpoint of the plume. The long-period PDs ( P ≈ 20–25 minutes) along the plume (AIA 171 Å) match the periodicity of spicules in the chromospheric images, suggesting a close connection between the spicules and the PDs. We suggest that the interchange reconnection between the closed and open flux of the coronal bright point at the plume’s footpoint is the most likely candidate to produce upflows and associated PDs along the plume. 
    more » « less