skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the size-Ramsey number of grids
Abstract We show that the size-Ramsey number of the$$\sqrt{n} \times \sqrt{n}$$grid graph is$$O(n^{5/4})$$, improving a previous bound of$$n^{3/2 + o(1)}$$by Clemens, Miralaei, Reding, Schacht, and Taraz.  more » « less
Award ID(s):
2054452
PAR ID:
10505524
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Combinatorics, Probability and Computing
Volume:
32
Issue:
6
ISSN:
0963-5483
Page Range / eLocation ID:
874 to 880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract What proportion of integers$$n \leq N$$may be expressed as$$x^2 + dy^2$$for some$$d \leq \Delta $$, with$$x,y$$integers? Writing$$\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$$for some$$\alpha \in (-\infty , \infty )$$, we show that the answer is$$\Phi (\alpha ) + o(1)$$, where$$\Phi $$is the Gaussian distribution function$$\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$$. A consequence of this is a phase transition: Almost none of the integers$$n \leq N$$can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 - \varepsilon }$$, but almost all of them can be represented by$$x^2 + dy^2$$with$$d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$$. 
    more » « less
  2. Abstract For a subgraph$$G$$of the blow-up of a graph$$F$$, we let$$\delta ^*(G)$$be the smallest minimum degree over all of the bipartite subgraphs of$$G$$induced by pairs of parts that correspond to edges of$$F$$. Johansson proved that if$$G$$is a spanning subgraph of the blow-up of$$C_3$$with parts of size$$n$$and$$\delta ^*(G) \ge \frac{2}{3}n + \sqrt{n}$$, then$$G$$contains$$n$$vertex disjoint triangles, and presented the following conjecture of Häggkvist. If$$G$$is a spanning subgraph of the blow-up of$$C_k$$with parts of size$$n$$and$$\delta ^*(G) \ge \left(1 + \frac 1k\right)\frac n2 + 1$$, then$$G$$contains$$n$$vertex disjoint copies of$$C_k$$such that each$$C_k$$intersects each of the$$k$$parts exactly once. A similar conjecture was also made by Fischer and the case$$k=3$$was proved for large$$n$$by Magyar and Martin. In this paper, we prove the conjecture of Häggkvist asymptotically. We also pose a conjecture which generalises this result by allowing the minimum degree conditions in each bipartite subgraph induced by pairs of parts of$$G$$to vary. We support this new conjecture by proving the triangle case. This result generalises Johannson’s result asymptotically. 
    more » « less
  3. Abstract Given a family$$\mathcal{F}$$of bipartite graphs, theZarankiewicz number$$z(m,n,\mathcal{F})$$is the maximum number of edges in an$$m$$by$$n$$bipartite graph$$G$$that does not contain any member of$$\mathcal{F}$$as a subgraph (such$$G$$is called$$\mathcal{F}$$-free). For$$1\leq \beta \lt \alpha \lt 2$$, a family$$\mathcal{F}$$of bipartite graphs is$$(\alpha,\beta )$$-smoothif for some$$\rho \gt 0$$and every$$m\leq n$$,$$z(m,n,\mathcal{F})=\rho m n^{\alpha -1}+O(n^\beta )$$. Motivated by their work on a conjecture of Erdős and Simonovits on compactness and a classic result of Andrásfai, Erdős and Sós, Allen, Keevash, Sudakov and Verstraëte proved that for any$$(\alpha,\beta )$$-smooth family$$\mathcal{F}$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\rho (\frac{2n}{5}+o(n))^{\alpha -1}$$is bipartite. In this paper, we strengthen their result by showing that for every real$$\delta \gt 0$$, there exists$$k_0$$such that for all odd$$k\geq k_0$$and sufficiently large$$n$$, any$$n$$-vertex$$\mathcal{F}\cup \{C_k\}$$-free graph with minimum degree at least$$\delta n^{\alpha -1}$$is bipartite. Furthermore, our result holds under a more relaxed notion of smoothness, which include the families$$\mathcal{F}$$consisting of the single graph$$K_{s,t}$$when$$t\gg s$$. We also prove an analogous result for$$C_{2\ell }$$-free graphs for every$$\ell \geq 2$$, which complements a result of Keevash, Sudakov and Verstraëte. 
    more » « less
  4. Abstract Counting independent sets in graphs and hypergraphs under a variety of restrictions is a classical question with a long history. It is the subject of the celebrated container method which found numerous spectacular applications over the years. We consider the question of how many independent sets we can have in a graph under structural restrictions. We show that any$$n$$-vertex graph with independence number$$\alpha$$without$$bK_a$$as an induced subgraph has at most$$n^{O(1)} \cdot \alpha ^{O(\alpha )}$$independent sets. This substantially improves the trivial upper bound of$$n^{\alpha },$$whenever$$\alpha \le n^{o(1)}$$and gives a characterisation of graphs forbidding which allows for such an improvement. It is also in general tight up to a constant in the exponent since there exist triangle-free graphs with$$\alpha ^{\Omega (\alpha )}$$independent sets. We also prove that if one in addition assumes the ground graph is chi-bounded one can improve the bound to$$n^{O(1)} \cdot 2^{O(\alpha )}$$which is tight up to a constant factor in the exponent. 
    more » « less
  5. Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums. 
    more » « less