skip to main content


This content will become publicly available on February 13, 2025

Title: Achieving O(\epsilon^{-1.5}) Complexity in Hessian/Jacobian-free Stochastic Bilevel Optimization
In this paper, we revisit the bilevel optimization problem, in which the upper-level objective function is generally nonconvex and the lower-level objective function is strongly convex. Although this type of problem has been studied extensively, it still remains an open question how to achieve an $\mathcal{O}(\epsilon^{-1.5})$ sample complexity in Hessian/Jacobian-free stochastic bilevel optimization without any second-order derivative computation. To fill this gap, we propose a novel Hessian/Jacobian-free bilevel optimizer named FdeHBO, which features a simple fully single-loop structure, a projection-aided finite-difference Hessian/Jacobian-vector approximation, and momentum-based updates. Theoretically, we show that FdeHBO requires $\mathcal{O}(\epsilon^{-1.5})$ iterations (each using $\mathcal{O}(1)$ samples and only first-order gradient information) to find an $\epsilon$-accurate stationary point. As far as we know, this is the first Hessian/Jacobian-free method with an $\mathcal{O}(\epsilon^{-1.5})$ sample complexity for nonconvex-strongly-convex stochastic bilevel optimization.  more » « less
Award ID(s):
2311274
PAR ID:
10505562
Author(s) / Creator(s):
; ;
Publisher / Repository:
Advances in Neural Information Processing Systems
Date Published:
Format(s):
Medium: X
Location:
Advances in Neural Information Processing Systems
Sponsoring Org:
National Science Foundation
More Like this
  1. This work proposes a new algorithm – the Single-timescale Double-momentum Stochastic Approximation (SUSTAIN) –for tackling stochastic unconstrained bilevel optimization problems. We focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on two-timescale or double loop techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that SUSTAIN requires ${O}(\epsilon^{-3/2})$ iterations (each using $O(1)$ samples) to find an $\epsilon$-stationary solution. The $\epsilon$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $\epsilon$. The total number of stochastic gradient samples required for the upper and lower level objective functions match the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex. 
    more » « less
  2. We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex. The problem has been extensively studied in recent years; the main technical challenge is to keep track of lower-level solutions $y^*(x)$ in response to the changes in the upper-level variables $x$. Subsequently, all existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them. We consider a dual question to such approaches: suppose we have an oracle, which we call $y^*$-aware, that returns an $O(\epsilon)$-estimate of the lower-level solution, in addition to first-order gradient estimators {\it locally unbiased} within the $\Theta(\epsilon)$-ball around $y^*(x)$. We study the complexity of finding stationary points with such an $y^*$-aware oracle: we propose a simple first-order method that converges to an $\epsilon$ stationary point using $O(\epsilon^{-6}), O(\epsilon^{-4})$ access to first-order $y^*$-aware oracles. Our upper bounds also apply to standard unbiased first-order oracles, improving the best-known complexity of first-order methods by $O(\epsilon)$ with minimal assumptions. We then provide the matching $\Omega(\epsilon^{-6})$, $\Omega(\epsilon^{-4})$ lower bounds without and with an additional smoothness assumption on $y^*$-aware oracles, respectively. Our results imply that any approach that simulates an algorithm with an $y^*$-aware oracle must suffer the same lower bounds. 
    more » « less
  3. We consider the problem of finding stationary points in Bilevel optimization when the lower-level problem is unconstrained and strongly convex. The problem has been extensively studied in recent years; the main technical challenge is to keep track of lower-level solutions $y^*(x)$ in response to the changes in the upper-level variables $x$. Subsequently, all existing approaches tie their analyses to a genie algorithm that knows lower-level solutions and, therefore, need not query any points far from them. We consider a dual question to such approaches: suppose we have an oracle, which we call $y^*$-aware, that returns an $O(\epsilon)$-estimate of the lower-level solution, in addition to first-order gradient estimators locally unbiased within the $\Theta(\epsilon)$-ball around $y^*(x)$. We study the complexity of finding stationary points with such an $y^*$-aware oracle: we propose a simple first-order method that converges to an $\epsilon$ stationary point using $O(\epsilon^{-6}), O(\epsilon^{-4})$ access to first-order $y^*$-aware oracles. Our upper bounds also apply to standard unbiased first-order oracles, improving the best-known complexity of first-order methods by $O(\epsilon)$ with minimal assumptions. We then provide the matching $\Omega(\epsilon^{-6})$, $\Omega(\epsilon^{-4})$ lower bounds without and with an additional smoothness assumption, respectively. Our results imply that any approach that simulates an algorithm with an $y^*$-aware oracle must suffer the same lower bounds. 
    more » « less
  4. Variance reduction techniques like SVRG provide simple and fast algorithms for optimizing a convex finite-sum objective. For nonconvex objectives, these techniques can also find a first-order stationary point (with small gradient). However, in nonconvex optimization it is often crucial to find a second-order stationary point (with small gradient and almost PSD hessian). In this paper, we show that Stabilized SVRG (a simple variant of SVRG) can find an \eps-second-order stationary point using only O(n^{2/3}/\eps^2+n/\eps^{1.5}) stochastic gradients. To our best knowledge, this is the first second-order guarantee for a simple variant of SVRG. The running time almost matches the known guarantees for finding \eps-first-order stationary points. 
    more » « less
  5. In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which the upper- and lower-level objectives are combined in a weighted sum with penalty parameter . In particular, we establish a strong connection between the penalty function and the hyper-objective by explicitly characterizing the conditions under which the values and derivatives of the two must be -close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective when the lower-level problem has multiple solutions under minimal conditions, which could be of independent interest. Next, viewing the penalty formulation as -approximation of the original BO, we propose first-order algorithms that find an -stationary solution by optimizing the penalty formulation with . When the perturbed lower-level problem uniformly satisfies the {\it small-error} proximal error-bound (EB) condition, we propose a first-order algorithm that converges to an -stationary point of the penalty function using in total accesses to first-order stochastic gradient oracles. Under an additional assumption on stochastic oracles, we show that the algorithm can be implemented in a fully {\it single-loop} manner, {\it i.e.,} with samples per iteration, and achieves the improved oracle-complexity of . 
    more » « less