skip to main content


Title: Dynamic Analysis of Chlorophyll a Fluorescence in Response to Time-Variant Excitations during Strong Actinic Illumination and Application in Probing Plant Water Loss

Magnitude measurement of chlorophyllafluorescence (ChlF) involves challenges, and dynamic responses to variable excitations may offer an alternative. In this research, ChlF was measured during strong actinic light by using a pseudo-random binary sequence as a time-variant multiple-frequency illumination excitation. The responses were observed in the time domain but were primarily analyzed in the frequency domain in terms of amplitude gain variations. The excitation amplitude was varied, and moisture loss was used to induce changes in the plant samples for further analysis. The results show that when nonphotochemical quenching (NPQ) activities start, the amplitude of ChlF responses vary, making the ChlF responses to illumination excitations nonlinear and nonstationary. NPQ influences the ChlF responses in low frequencies, most notably below 0.03 rad/s. The low-frequency gain is linearly correlated with NPQ and can thus be used as a reference to compensate for the variations in ChlF measurements. The high-frequency amplitude gain showed a stronger correlation with moisture loss after correction with the low-frequency gain. This work demonstrates the usefulness of dynamic characteristics in broadening the applications of ChlF measurements in plant analysis and offers a way to mitigate variabilities in ChlF measurements during strong actinic illumination.

 
more » « less
Award ID(s):
1903716
PAR ID:
10505623
Author(s) / Creator(s):
; ;
Publisher / Repository:
https://spj.science.org
Date Published:
Journal Name:
Plant Phenomics
Volume:
6
ISSN:
2643-6515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evaluation of photosynthetic quantum yield is important for analyzing the phenotype of plants. Chlorophyll a fluorescence (ChlF) has been widely used to estimate plant photosynthesis and its regulatory mechanisms. The ratio of variable to maximum fluorescence, F v / F m , obtained from a ChlF induction curve, is commonly used to reflect the maximum photochemical quantum yield of photosystem II (PSII), but it is measured after a sample is dark-adapted for a long time, which limits its practical use. In this research, a least-squares support vector machine (LSSVM) model was developed to explore whether F v / F m can be determined from ChlF induction curves measured without dark adaptation. A total of 7,231 samples of 8 different experiments, under diverse conditions, were used to train the LSSVM model. Model evaluation with different samples showed excellent performance in determining F v / F m from ChlF signals without dark adaptation. Computation time for each test sample was less than 4 ms. Further, the prediction performance of test dataset was found to be very desirable: a high correlation coefficient (0.762 to 0.974); a low root mean squared error (0.005 to 0.021); and a residual prediction deviation of 1.254 to 4.933. These results clearly demonstrate that F v / F m , the widely used ChlF induction feature, can be determined from measurements without dark adaptation of samples. This will not only save experiment time but also make F v / F m useful in real-time and field applications. This work provides a high-throughput method to determine the important photosynthetic feature through ChlF for phenotyping plants. 
    more » « less
  2. The stability and resonance spectra associated with a domain wall skyrmion embedded within a Néel skyrmion, forming a 1-kink skyrmion, has been studied using micromagnetic simulations. We show that the 1-kink skyrmion is stable over a wide range of fields at moderate strengths of the Dzyaloshinskii-Moriya interaction. By exciting these structures with a broadband magnetic field excitation, we find complex resonance behavior deviating from that of a pure Néel skyrmion. For out-of-plane excitations, the 1-kink skyrmion demonstrates an additional mode relative to that of the Néel skyrmion at reduced amplitude. These consist of low frequency and high frequency modes associated with both a breathing mode and an oscillation of the embedded domain wall skyrmion. Following an in-plane excitation, both Néel and 1-kink skyrmions exhibit a counterclockwise rotational mode with similar frequencies, as well as a higher frequency mode associated with the interaction of the structure with the ferromagnetic background state. These results may help pave the way for exploration of more complex spin structures for magnetic-based microwave devices. 
    more » « less
  3. null (Ed.)
    The responses of plant photosynthesis to rapid fluctuations in environmental conditions are thought to be critical for efficient conversion of light energy. Such responses are not well represented under laboratory conditions, but have also been difficult to probe in complex field environments. We demonstrate an open science approach to this problem that combines multifaceted measurements of photosynthesis and environmental conditions, and an unsupervised statistical clustering approach. In a selected set of data on mint (Mentha sp.), we show that the “light potential” for increasing linear electron flow (LEF) and nonphotochemical quenching (NPQ) upon rapid light increases are strongly suppressed in leaves previously exposed to low ambient PAR or low leaf temperatures, factors that can act both independently and cooperatively. Further analyses allowed us to test specific mechanisms. With decreasing leaf temperature or PAR, limitations to photosynthesis during high light fluctuations shifted from rapidly-induced NPQ to photosynthetic control (PCON) of electron flow at the cytochrome b6f complex. At low temperatures, high light induced lumen acidification, but did not induce NPQ, leading to accumulation of reduced electron transfer intermediates, a situation likely to induce photodamage, and represents a potential target for improving the efficiency and robustness of photosynthesis. Finally, we discuss the implications of the approach for open science efforts to understand and improve crop productivity. 
    more » « less
  4. Abstract Plants contain many nucleotide-binding leucine-rich repeat (NLR) proteins that are postulated to function as intracellular immune receptors but do not yet have an identified function during plant-pathogen interactions. SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1) one such NLR protein of the Toll-interleukin 1 receptor (TIR) type despite its well characterized gain-of-function activity and its involvement in autoimmunity in Arabidopsis (Arabidopsis thaliana). Here, we investigated the role of SNC1 in natural plant-pathogen interactions and genetically tested the importance of the enzymatic activities of its TIR domain for its function. The SNC1 loss-of-function mutants were more susceptible to avirulent bacterial pathogen strains of Pseudomonas syringae containing specific effectors, especially under constant light growth condition. The mutants also had reduced defense gene expression induction and hypersensitive responses upon infection by avirulent pathogens under constant light growth condition. In addition, genetic and biochemical studies supported that the TIR enzymatic activity of SNC1 is required for its gain-of-function activity. In sum, our study uncovers a role of SNC1 as an amplifier of plant defense responses during natural plant-pathogen interactions and indicates its use of enzymatic activity and intermolecular interactions for triggering autoimmune responses. 
    more » « less
  5. Abstract

    Water supply limitations will likely impose increasing restrictions on future crop production, underlining a need for crops that use less water per mass of yield. Water use efficiency (WUE) therefore becomes a key consideration in developing resilient and productive crops. In this study, we hypothesized that it is possible to improve WUE under drought conditions via modulation of chloroplast signals for stomatal opening by up-regulation of non-photochemical quenching (NPQ). Nicotiana tabacum plants with strong overexpression of the PsbS gene encoding PHOTOSYSTEM II SUBUNIT S, a key protein in NPQ, were grown under differing levels of drought. The PsbS-overexpressing lines lost 11% less water per unit CO2 fixed under drought and this did not have a significant effect on plant size. Depending on growth conditions, the PsbS-overexpressing lines consumed from 4–30% less water at the whole-plant level than the corresponding wild type. Leaf water and chlorophyll contents showed a positive relation with the level of NPQ. This study therefore provides proof of concept that up-regulation of NPQ can increase WUE, and as such is an important step towards future engineering of crops with improved performance under drought.

     
    more » « less