skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Max Markov Chain
In this paper, we introduce Max Markov Chain (MMC), a novel model for sequential data with sparse correlations among the state variables.It may also be viewed as a special class of approximate models for High-order Markov Chains (HMCs).MMC is desirable for domains where the sparse correlations are long-term and vary in their temporal stretches.Although generally intractable, parameter optimization for MMC can be solved analytically.However, based on this result,we derive an approximate solution that is highly efficient empirically.When compared with HMC and approximate HMC models, MMCcombines better sample efficiency, model parsimony, and an outstanding computational advantage.Such a quality allows MMC to scale to large domainswhere the competing models would struggle to perform.We compare MMC with several baselines with synthetic and real-world datasets to demonstrate MMC as a valuable alternative for stochastic modeling.  more » « less
Award ID(s):
2047186
PAR ID:
10505645
Author(s) / Creator(s):
;
Publisher / Repository:
International Joint Conferences on Artificial Intelligence Organization
Date Published:
ISBN:
978-1-956792-03-4
Page Range / eLocation ID:
5758 to 5767
Format(s):
Medium: X
Location:
Macau, SAR China
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose a very fast approximate Markov chain Monte Carlo sampling framework that is applicable to a large class of sparse Bayesian inference problems. The computational cost per iteration in several regression models is of order O(n(s+J)), where n is the sample size, s is the underlying sparsity of the model, and J is the size of a randomly selected subset of regressors. This cost can be further reduced by data sub-sampling when stochastic gradient Langevin dynamics are employed. The algorithm is an extension of the asynchronous Gibbs sampler of Johnson et al. [(2013). Analyzing Hogwild parallel Gaussian Gibbs sampling. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13) (Vol. 2, pp. 2715–2723)], but can be viewed from a statistical perspective as a form of Bayesian iterated sure independent screening [Fan, J., Samworth, R., & Wu, Y. (2009). Ultrahigh dimensional feature selection: Beyond the linear model. Journal of Machine Learning Research, 10, 2013–2038]. We show that in high-dimensional linear regression problems, the Markov chain generated by the proposed algorithm admits an invariant distribution that recovers correctly the main signal with high probability under some statistical assumptions. Furthermore, we show that its mixing time is at most linear in the number of regressors. We illustrate the algorithm with several models. 
    more » « less
  2. The problem of sampling constrained continuous distributions has frequently appeared in many machine/statistical learning models. Many Markov Chain Monte Carlo (MCMC) sampling methods have been adapted to handle different types of constraints on random variables. Among these methods, Hamilton Monte Carlo (HMC) and the related approaches have shown significant advantages in terms of computational efficiency compared with other counterparts. In this article, we first review HMC and some extended sampling methods, and then we concretely explain three constrained HMC-based sampling methods, reflection, reformulation, and spherical HMC. For illustration, we apply these methods to solve three well-known constrained sampling problems, truncated multivariate normal distributions, Bayesian regularized regression, and nonparametric density estimation. In this review, we also connect constrained sampling with another similar problem in the statistical design of experiments with constrained design space. 
    more » « less
  3. Differential privacy has emerged as a promising probabilistic formulation of privacy, generating intense interest within academia and industry. We present a push-button, automated technique for verifying ε-differential privacy of sophisticated randomized algorithms. We make several conceptual, algorithmic, and practical contributions: (i) Inspired by the recent advances on approximate couplings and randomness alignment, we present a new proof technique called coupling strategies, which casts differential privacy proofs as a winning strategy in a game where we have finite privacy resources to expend. (ii) To discover a winning strategy, we present a constraint-based formulation of the problem as a set of Horn modulo couplings (HMC) constraints, a novel combination of first-order Horn clauses and probabilistic constraints. (iii) We present a technique for solving HMC constraints by transforming probabilistic constraints into logical constraints with uninterpreted functions. (iv) Finally, we implement our technique in the FairSquare verifier and provide the first automated privacy proofs for a number of challenging algorithms from the differential privacy literature, including Report Noisy Max, the Exponential Mechanism, and the Sparse Vector Mechanism. 
    more » « less
  4. Hamiltonian Monte Carlo (HMC) is a powerful algorithm to sample latent variables from Bayesian models. The advent of probabilistic programming languages (PPLs) frees users from writing inference algorithms and lets users focus on modeling. However, many models are difficult for HMC to solve directly, and often require tricks like model reparameterization. We are motivated by the fact that many of those models could be simplified by marginalization. We propose to use automatic marginalization as part of the sampling process using HMC in a graphical model extracted from a PPL, which substantially improves sampling from real-world hierarchical models. 
    more » « less
  5. Model checking systems formalized using probabilistic models such as discrete time Markov chains (DTMCs) and Markov decision processes (MDPs) can be reduced to computing constrained reachability properties. Linear programming methods to compute reachability probabilities for DTMCs and MDPs do not scale to large models. Thus, model checking tools often employ iterative methods to approximate reachability probabilities. These approximations can be far from the actual probabilities, leading to inaccurate model checking results. On the other hand, specialized techniques employed in existing state-of-the-art exact quantitative model checkers, don’t scale as well as their iterative counterparts. In this work, we present a new model checking algorithm that improves the approximate results obtained by scalable iterative techniques to compute exact reachability probabilities. Our techniques are implemented as an extension of the PRISM model checker and are evaluated against other exact quantitative model checking engines. 
    more » « less