skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exact quantitative probabilistic model checking through rational search
Model checking systems formalized using probabilistic models such as discrete time Markov chains (DTMCs) and Markov decision processes (MDPs) can be reduced to computing constrained reachability properties. Linear programming methods to compute reachability probabilities for DTMCs and MDPs do not scale to large models. Thus, model checking tools often employ iterative methods to approximate reachability probabilities. These approximations can be far from the actual probabilities, leading to inaccurate model checking results. On the other hand, specialized techniques employed in existing state-of-the-art exact quantitative model checkers, don’t scale as well as their iterative counterparts. In this work, we present a new model checking algorithm that improves the approximate results obtained by scalable iterative techniques to compute exact reachability probabilities. Our techniques are implemented as an extension of the PRISM model checker and are evaluated against other exact quantitative model checking engines.  more » « less
Award ID(s):
1553548 1900924 1901069 1564296
PAR ID:
10194353
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Formal Methods in System Design
ISSN:
0925-9856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantitative verification tools compute probabilities, expected rewards, or steady-state values for formal models of stochastic and timed systems. Exact results often cannot be obtained efficiently, so most tools use floating-point arithmetic in iterative algorithms that approximate the quantity of interest. Correctness is thus defined by the desired precision and determines performance. In this paper, we report on the experimental evaluation of these trade-offs performed in QComp 2020: the second friendly competition of tools for the analysis of quantitative formal models. We survey the precision guarantees—ranging from exact rational results to statistical confidence statements—offered by the nine participating tools. They gave rise to a performance evaluation using five tracks with varying correctness criteria, of which we present the results. 
    more » « less
  2. null (Ed.)
    We present a predictive runtime monitoring technique for estimating future vehicle positions and the probability of collisions with obstacles. Vehicle dynamics model how the position and velocity change over time as a function of external inputs. They are commonly described by discrete-time stochastic models. Whereas positions and velocities can be measured, the inputs (steering and throttle) are not directly measurable in these models. In our paper, we apply Bayesian inference techniques for real-time estimation, given prior distribution over the unknowns and noisy state measurements. Next, we pre-compute the set-valued reachability analysis to approximate future positions of a vehicle. The pre-computed reachability sets are combined with the posterior probabilities computed through Bayesian estimation to provided a predictive verification framework that can be used to detect impending collisions with obstacles. Our approach is evaluated using the coordinated-turn vehicle model for a UAV using on-board measurement data obtained from a flight test of a Talon UAV. We also compare the results with sampling-based approaches. We find that precomputed reachability analysis can provide accurate warnings up to 6 seconds in advance and the accuracy of the warnings improve as the time horizon is narrowed from 6 to 2 seconds. The approach also outperforms sampling in terms of on-board computation cost and accuracy measures. 
    more » « less
  3. Robust Markov decision processes (MDPs) compute reliable solutions for dynamic decision problems with partially-known transition probabilities. Unfortunately, accounting for uncertainty in the transition probabilities significantly increases the computational complexity of solving robust MDPs, which limits their scalability. This paper describes new, efficient algorithms for solving the common class of robust MDPs with s- and sa-rectangular ambiguity sets defined by weighted L1 norms. We propose partial policy iteration, a new, efficient, flexible, and general policy iteration scheme for robust MDPs. We also propose fast methods for computing the robust Bellman operator in quasi-linear time, nearly matching the ordinary Bellman operator's linear complexity. Our experimental results indicate that the proposed methods are many orders of magnitude faster than the state-of-the-art approach, which uses linear programming solvers combined with a robust value iteration. 
    more » « less
  4. We investigate approximate Bayesian inference techniques for nonlinear systems described by ordinary differential equation (ODE) models. In particular, the approximations will be based on set-valued reachability analysis approaches, yielding approximate models for the posterior distribution. Nonlinear ODEs are widely used to mathematically describe physical and biological models. However, these models are often described by parameters that are not directly measurable and have an impact on the system behaviors. Often, noisy measurement data combined with physical/biological intuition serve as the means for finding appropriate values of these parameters.Our approach operates under a Bayesian framework, given prior distribution over the parameter space and noisy observations under a known sampling distribution. We explore subsets of the space of model parameters, computing bounds on the likelihood for each subset. This is performed using nonlinear set-valued reachability analysis that is made faster by means of linearization around a reference trajectory. The tiling of the parameter space can be adaptively refined to make bounds on the likelihood tighter. We evaluate our approach on a variety of nonlinear benchmarks and compare our results with Markov Chain Monte Carlo and Sequential Monte Carlo approaches. 
    more » « less
  5. Many program-analysis problems can be formulated as graph-reachability problems. Interleaved Dyck language reachability ( InterDyck -reachability) is a fundamental framework to express a wide variety of program-analysis problems over edge-labeled graphs. The InterDyck language represents an intersection of multiple matched-parenthesis languages (i.e., Dyck languages). In practice, program analyses typically leverage one Dyck language to achieve context-sensitivity, and other Dyck languages to model data dependencies, such as field-sensitivity and pointer references/dereferences. In the ideal case, an InterDyck -reachability framework should model multiple Dyck languages simultaneously . Unfortunately, precise InterDyck -reachability is undecidable. Any practical solution must over-approximate the exact answer. In the literature, a lot of work has been proposed to over-approximate the InterDyck -reachability formulation. This article offers a new perspective on improving both the precision and the scalability of InterDyck -reachability: we aim at simplifying the underlying input graph G . Our key insight is based on the observation that if an edge is not contributing to any InterDyck -paths, we can safely eliminate it from G . Our technique is orthogonal to the InterDyck -reachability formulation and can serve as a pre-processing step with any over-approximating approach for InterDyck -reachability. We have applied our graph simplification algorithm to pre-processing the graphs from a recent InterDyck -reachability-based taint analysis for Android. Our evaluation of three popular InterDyck -reachability algorithms yields promising results. In particular, our graph-simplification method improves both the scalability and precision of all three InterDyck -reachability algorithms, sometimes dramatically. 
    more » « less