skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1752009

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The paucity of targeted therapies for triple‐negative breast cancer (TNBC) causes patients with this aggressive disease to suffer a poor clinical prognosis. A promising target for therapeutic intervention is the Wnt signaling pathway, which is activated in TNBC cells when extracellular Wnt ligands bind overexpressed Frizzled7 (FZD7) transmembrane receptors. This stabilizes intracellular β‐catenin proteins that in turn promote transcription of oncogenes that drive tumor growth and metastasis. To suppress Wnt signaling in TNBC cells, this work develops therapeutic nanoparticles (NPs) functionalized with FZD7 antibodies and β‐catenin small interfering RNAs (siRNAs). The antibodies enable TNBC cell specific binding and inhibit Wnt signaling by locking FZD7 receptors in a ligand unresponsive state, while the siRNAs suppress β‐catenin through RNA interference. Compared to NPs coated with antibodies or siRNAs individually, NPs coated with both agents more potently reduce the expression of several Wnt related genes in TNBC cells, leading to greater inhibition of cell proliferation, migration, and spheroid formation. In two murine models of metastatic TNBC, the dual antibody/siRNA nanocarriers outperformed controls in terms of inhibiting tumor growth, metastasis, and recurrence. These findings demonstrate suppressing Wnt signaling at both the receptor and mRNA levels via antibody/siRNA nanocarriers is a promising approach to combat TNBC. 
    more » « less
  2. Abstract Cancer is a global health problem that needs effective treatment strategies. Conventional treatments for solid-tumor cancers are unsatisfactory because they cause unintended harm to healthy tissues and are susceptible to cancer cell resistance. Nanoparticle-mediated photothermal therapy is a minimally invasive treatment for solid-tumor cancers that has immense promise as a standalone therapy or adjuvant to other treatments like chemotherapy, immunotherapy, or radiotherapy. To maximize the success of photothermal therapy, light-responsive nanoparticles can be camouflaged with cell membranes to endow them with unique biointerfacing capabilities that reduce opsonization, prolong systemic circulation, and improve tumor delivery through enhanced passive accumulation or homotypic targeting. This ensures a sufficient dose of photoresponsive nanoparticles arrives at tumor sites to enable their complete thermal ablation. This review summarizes the state-of-the-art in cell membrane camouflaged nanoparticles for photothermal cancer therapy and provides insights to the path forward for clinical translation. 
    more » « less
  3. Abstract Hematopoietic stem and progenitor cells (HSPCs) are desirable targets for gene therapy but are notoriously difficult to target and transfect. Existing viral vector‐based delivery methods are not effective in HSPCs due to their cytotoxicity, limited HSPC uptake and lack of target specificity (tropism). Poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles (NPs) are attractive, nontoxic carriers that can encapsulate various cargo and enable its controlled release. To engineer PLGA NP tropism for HSPCs, megakaryocyte (Mk) membranes, which possess HSPC‐targeting moieties, were extracted and wrapped around PLGA NPs, producing MkNPs. In vitro, fluorophore‐labeled MkNPs are internalized by HSPCs within 24 h and were selectively taken up by HSPCs versus other physiologically related cell types. Using membranes from megakaryoblastic CHRF‐288 cells containing the same HSPC‐targeting moieties as Mks, CHRF‐wrapped NPs (CHNPs) loaded with small interfering RNA facilitated efficient RNA interference upon delivery to HSPCs in vitro. HSPC targeting was conserved in vivo, as poly(ethylene glycol)–PLGA NPs wrapped in CHRF membranes specifically targeted and were taken up by murine bone marrow HSPCs following intravenous administration. These findings suggest that MkNPs and CHNPs are effective and promising vehicles for targeted cargo delivery to HSPCs. 
    more » « less
  4. Abstract Significant advances have been made in the development of nanoparticles for cancer treatment in recent years. Despite promising results in preclinical animal models, cancer nanomedicines often fail in clinical trials. This failure rate could be reduced by defining stringent criteria for testing and quality control during the design and development stages, and by performing carefully planned preclinical studies in relevant animal models. This article discusses best practices for the evaluation of nanomedicines in murine tumor models. First, a recommended set of experiments to perform is introduced, including discussion of the types of data to collect during these studies. This is followed by an outline of various tumor models and their clinical relevance. Next, different routes of nanoparticle administration are overviewed, followed by a summary of important controls to include in in vivo studies of nanomedicine. Finally, animal welfare considerations are discussed, and an overview of the steps involved in achieving US Food and Drug Administration approval after animal studies are completed is provided. Researchers should use this report as a guideline for effective preclinical evaluation of cancer nanomedicine. As the community adopts best practices for in vivo testing, the rate of clinical translation of cancer nanomedicines is likely to improve. 
    more » « less
  5. There is an unmet need for carriers that can deliver nucleic acids (NAs) to cancer cells and tumors to perpetuate gene regulation and manage disease progression. Membrane-wrapped nanoparticles (NPs) can be loaded with exogenously designed nucleic acid cargoes, such as plasmid deoxyribonucleic acid (pDNA), messenger ribonucleic acid (mRNA), small interfering RNA (siRNA), microRNA (miRNA), and immunostimulatory CpG oligodeoxynucleotides (CpG ODNs), to mitigate challenges presented by NAs’ undesirable negative charge, hydrophilicity, and relatively large size. By conjugating or encapsulating NAs within membrane-wrapped NPs, various physiological barriers can be overcome so that NAs experience increased blood circulation half-lives and enhanced accumulation in intended sites. This review discusses the status of membrane-wrapped NPs as NA delivery vehicles and their advancement in gene regulation for cancer management in vitro and in vivo . With continued development, membrane-wrapped NPs have great potential as future clinical tools to treat cancer and other diseases with a known genetic basis. 
    more » « less