Abstract Chemical modifications on RNA can regulate fundamental biological processes. Recent efforts have illuminated the chemical diversity of posttranscriptional (“epitranscriptomic”) modifications on eukaryotic messenger RNA and have begun to elucidate their biological roles. In this review, we discuss our current molecular understanding of epitranscriptomic RNA modifications and their effects on gene expression. In particular, we highlight the role of modifications in mediating RNA‐protein interactions, RNA structure, and RNA‐RNA base pairing, and how these macromolecular interactions control biological processes in the cell.
more »
« less
Resolving altered base-pairing of RNA modifications with DNA nanoswitches
Abstract There are >170 naturally occurring RNA chemical modifications, with both known and unknown biological functions. Analytical methods for detecting chemical modifications and for analyzing their effects are relatively limited and have had difficulty keeping pace with the demand for RNA chemical biology and biochemistry research. Some modifications can affect the ability of RNA to hybridize with its complementary sequence or change the selectivity of base pairing. Here, we investigate the use of affinity-based DNA nanoswitches to resolve energetic differences in hybridization. We found that a single m3C modification can sufficiently destabilize hybridization to abolish a detection signal, while an s4U modification can selectively hybridize with G over A. These results establish proof of concept for using DNA nanoswitches to detect certain RNA modifications and analyzing their effects in base pairing stability and specificity.
more »
« less
- Award ID(s):
- 2244372
- PAR ID:
- 10505827
- Publisher / Repository:
- Nucleic Acids Research
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 51
- Issue:
- 20
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- 11291 to 11297
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
DNA duplex stability arises from cooperative interactions between multiple adjacent nucleotides that favor base pairing and stacking when formed as a continuous stretch rather than individually. Lesions and nucleobase modifications alter this stability in complex manners that remain challenging to understand despite their centrality to biology. Here, we investigate how an abasic site destabilizes small DNA duplexes and reshapes base pairing dynamics and hybridization pathways using temperature-jump infrared spectroscopy and coarse-grained molecular dynamics simulations. We show how an abasic site splits the cooperativity in a short duplex into two segments, which destabilizes small duplexes as a whole and enables metastable half-dissociated configurations. Dynamically, it introduces an additional barrier to hybridization by constraining the hybridization mechanism to a step-wise process of nucleating and zipping a stretch on one side of the abasic site and then the other.more » « less
-
null (Ed.)Abstract The N4-methylation of cytidine (m4C and m42C) in RNA plays important roles in both bacterial and eukaryotic cells. In this work, we synthesized a series of m4C and m42C modified RNA oligonucleotides, conducted their base pairing and bioactivity studies, and solved three new crystal structures of the RNA duplexes containing these two modifications. Our thermostability and X-ray crystallography studies, together with the molecular dynamic simulation studies, demonstrated that m4C retains a regular C:G base pairing pattern in RNA duplex and has a relatively small effect on its base pairing stability and specificity. By contrast, the m42C modification disrupts the C:G pair and significantly decreases the duplex stability through a conformational shift of native Watson-Crick pair to a wobble-like pattern with the formation of two hydrogen bonds. This double-methylated m42C also results in the loss of base pairing discrimination between C:G and other mismatched pairs like C:A, C:T and C:C. The biochemical investigation of these two modified residues in the reverse transcription model shows that both mono- or di-methylated cytosine bases could specify the C:T pair and induce the G to T mutation using HIV-1 RT. In the presence of other reverse transcriptases with higher fidelity like AMV-RT, the methylation could either retain the normal nucleotide incorporation or completely inhibit the DNA synthesis. These results indicate the methylation at N4-position of cytidine is a molecular mechanism to fine tune base pairing specificity and affect the coding efficiency and fidelity during gene replication.more » « less
-
Abstract Hybridization and strand displacement kinetics determine the evolution of the base paired configurations of mixtures of oligonucleotides over time. Although much attention has been focused on the thermodynamics of DNA and RNA base pairing in the scientific literature, much less work has been done on the time dependence of interactions involving multiple strands, especially in RNA. Here we provide a study of oligoribonucleotide interaction kinetics and show that it is possible to calculate the association, dissociation and strand displacement rates displayed by short oligonucleotides (5nt–12nt) that exhibit no expected secondary structure as simple functions of oligonucleotide length, CG content, ΔG of hybridization and ΔG of toehold binding. We then show that the resultant calculated kinetic parameters are consistent with the experimentally observed time dependent changes in concentrations of the different species present in mixtures of multiple competing RNA strands. We show that by changing the mixture composition, it is possible to create and tune kinetic traps that extend by orders of magnitude the typical sub-second hybridization timescale of two complementary oligonucleotides. We suggest that the slow equilibration of complex oligonucleotide mixtures may have facilitated the nonenzymatic replication of RNA during the origin of life.more » « less
-
Abstract SARS‐CoV‐2 causes individualized symptoms. Many reasons have been given. We propose that an individual's epitranscriptomic system could be responsible as well. The viral RNA genome can be subject to epitranscriptomic modifications, which can be different for different individuals, and thus epitranscriptomics can affect many events including RNA replication differently. In this context, we studied the effects of modifications including pseudouridine (Ψ), 5‐methylcytosine (m5C),N6‐methyladenosine (m6A),N1‐methyladenosine (m1A) andN3‐methylcytosine (m3C) on the activity of SARS‐CoV‐2 replication complex (SC2RC). We found that Ψ, m5C, m6A and m3C had little effect, whereas m1A inhibited the enzyme. Both m1A and m3C disrupt canonical base pairing, but they had different effects. The fact that m1A inhibits SC2RC implies that the modification can be difficult to detect. This fact also implies that individuals with upregulated m1A including cancer, obesity and diabetes patients might have milder symptoms. However, this contradicts clinical observations. Relevant discussions are provided.more » « less