We initiate the study of biologically-inspired spiking neural networks from the perspective of streaming algorithms. Like computers, human brains face memory limitations, which pose a significant obstacle when processing large scale and dynamically changing data. In computer science, these challenges are captured by the well-known streaming model, which can be traced back to Munro and Paterson `78 and has had significant impact in theory and beyond. In the classical streaming setting, one must compute a function f of a stream of updates š® = {uā,ā¦,u_m}, given restricted single-pass access to the stream. The primary complexity measure is the space used by the algorithm. In contrast to the large body of work on streaming algorithms, relatively little is known about the computational aspects of data processing in spiking neural networks. In this work, we seek to connect these two models, leveraging techniques developed for streaming algorithms to better understand neural computation. Our primary goal is to design networks for various computational tasks using as few auxiliary (non-input or output) neurons as possible. The number of auxiliary neurons can be thought of as the "space" required by the network. Previous algorithmic work in spiking neural networks has many similarities with streaming algorithms. However, the connection between these two space-limited models has not been formally addressed. We take the first steps towards understanding this connection. On the upper bound side, we design neural algorithms based on known streaming algorithms for fundamental tasks, including distinct elements, approximate median, and heavy hitters. The number of neurons in our solutions almost match the space bounds of the corresponding streaming algorithms. As a general algorithmic primitive, we show how to implement the important streaming technique of linear sketching efficiently in spiking neural networks. On the lower bound side, we give a generic reduction, showing that any space-efficient spiking neural network can be simulated by a space-efficient streaming algorithm. This reduction lets us translate streaming-space lower bounds into nearly matching neural-space lower bounds, establishing a close connection between the two models.
more »
« less
Streaming and Query Once Space Complexity of Longest Increasing Subsequence
Longest Increasing Subsequence (LIS) is a fundamental problem in combinatorics and computer science. Previously, there have been numerous works on both upper bounds and lower bounds of the time complexity of computing and approximating , yet only a few on the equally important space complexity. In this paper, we further study the space complexity of computing and approximating LIS in various models. Specifically, we prove non-trivial space lower bounds in the following two models: (1) the adaptive query-once model or read-once branching programs, and (2) the streaming model where the order of streaming is different from the natural order. As far as we know, there are no previous works on the space complexity of LIS in these models. Besides the bounds, our work also leaves many intriguing open problems.
more »
« less
- PAR ID:
- 10505876
- Publisher / Repository:
- Springer, Cham
- Date Published:
- Journal Name:
- Lecture notes in computer science
- ISSN:
- 1611-3349
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Santhanam, Rahul (Ed.)The following question arises naturally in the study of graph streaming algorithms: Is there any graph problem which is "not too hard", in that it can be solved efficiently with total communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming algorithm with Ć(n) space (i.e., a semi-streaming algorithm) needs a polynomial n^Ī©(1) number of passes? Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case. However, the lower bounds that they obtained are for rather non-standard graph problems. Our first main contribution is to present the first polynomial-pass lower bounds for natural "not too hard" graph problems studied previously in the streaming model: k-cores and degeneracy. We devise a novel communication protocol for both problems with near-linear communication, thus showing that k-cores and degeneracy are natural examples of "not too hard" problems. Indeed, previous work have developed single-pass semi-streaming algorithms for approximating these problems. In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires (almost) Ī©(n^{1/3}) passes. The lower bound follows by a reduction from a generalization of the hidden pointer chasing (HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming lower bounds. Our second main contribution is improved round-communication lower bounds for the underlying communication problems at the basis of these reductions: - We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal bounds for this problem. - We further observe that all current reductions from HPC can also work with a generalized version of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound for this generalization. These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming algorithms by a polynomial factor, namely, from n^{1/5} to n^{1/3} passes.more » « less
-
We consider message-efficient continuous random sampling from a distributed stream, where the probability of inclusion of an item in the sample is proportional to a weight associated with the item. The unweighted version, where all weights are equal, is well studied, and admits tight upper and lower bounds on message complexity. For weighted sampling with replacement, there is a simple reduction to unweighted sampling with replacement. However, in many applications the stream may have only a few heavy items which may dominate a random sample when chosen with replacement. Weighted sampling without replacement (weighted SWOR) eludes this issue, since such heavy items can be sampled at most once. In this work, we present the first message-optimal algorithm for weighted SWOR from a distributed stream. Our algorithm also has optimal space and time complexity. As an application of our algorithm for weighted SWOR, we derive the first distributed streaming algorithms for tracking heavy hitters with residual error. Here the goal is to identify stream items that contribute significantly to the residual stream, once the heaviest items are removed. Residual heavy hitters generalize the notion of $$\ell_1$$ heavy hitters and are important in streams that have a skewed distribution of weights. In addition to the upper bound, we also provide a lower bound on the message complexity that is nearly tight up to a $$Åog(1/\eps)$$ factor. Finally, we use our weighted sampling algorithm to improve the message complexity of distributed $$L_1$$ tracking, also known as count tracking, which is a widely studied problem in distributed streaming. We also derive a tight message lower bound, which closes the message complexity of this fundamental problem.more » « less
-
Meka, Raghu (Ed.)We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass stream. While graph sparsification in streams has been intensively studied, the specific application of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower bounds on minimum cut problems in insertion-only streams for a variety of settings, including for both randomized and deterministic algorithms, for both arbitrary and random order streams, and for both approximate and exact algorithms. One of our main results is an OĢ(n/ε) space algorithm with fast update time for approximating a spectral cut query with high probability on a stream given in an arbitrary order. Our result breaks the Ī©(n/ε²) space lower bound required of a sparsifier that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with near optimal space of OĢ(n/ε) for minimum cut and approximate all-pairs effective resistances, with matching space lower-bounds. The amortized update time of our algorithms is OĢ(1), provided that the number of edges in the input graph is at least (n/ε²)^{1+o(1)}. We also give a generic way of incorporating sketching into a recursive contraction algorithm to improve the post-processing time of our algorithms. In addition to these results, we give a random-order streaming algorithm that computes the exact minimum cut on a simple, unweighted graph using OĢ(n) space. Finally, we give an Ī©(n/ε²) space lower bound for deterministic minimum cut algorithms which matches the best-known upper bound up to polylogarithmic factors.more » « less
-
We propose data-driven one-pass streaming algorithms for estimating the number of triangles and four cycles, two fundamental problems in graph analytics that are widely studied in the graph data stream literature. Recently, Hsu et al. (2019a) and Jiang et al. (2020) applied machine learning techniques in other data stream problems, using a trained oracle that can predict certain properties of the stream elements to improve on prior āclassicalā algorithms that did not use oracles. In this paper, we explore the power of a āheavy edgeā oracle in multiple graph edge streaming models. In the adjacency list model, we present a one-pass triangle counting algorithm improving upon the previous space upper bounds without such an oracle. In the arbitrary order model, we present algorithms for both triangle and four cycle estimation with fewer passes and the same space complexity as in previous algorithms, and we show several of these bounds are optimal. We analyze our algorithms under several noise models, showing that the algorithms perform well even when the oracle errs. Our methodology expands upon prior work on āclassicalā streaming algorithms, as previous multi-pass and random order streaming algorithms can be seen as special cases of our algorithms, where the first pass or random order was used to implement the heavy edge oracle. Lastly, our experiments demonstrate advantages of the proposed method compared to state-of-the-art streaming algorithms.more » « less
An official website of the United States government
