skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2127575

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 4, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. One of the earliest models of weak randomness is the Chor-Goldreich (CG) source. A (t,n,k)- CG source is a sequence of random variables X =(x1,…,xt)∼({0,1}n)t, where each Xi has min-entropy k conditioned on any fixing of x1,…,xi−1. Chor and Goldreich proved that there is no deterministic way to extract randomness from such a source. Nevertheless, Doron, Moshkovitz, Oh, and Zuckerman showed that there is a deterministic way to condense a CG source into a string with small entropy gap. They gave applications of such a condenser to simulating randomized algorithms with small error and to certain cryptographic tasks. They studied the case where the block length n and entropy rate k/n are both constant. We study the much more general setting where the block length can be arbitrarily large, and the entropy rate can be arbitrarily small. We construct the first explicit condenser for CG sources in this setting, and it can be instantiated in a number of different ways. When the entropy rate of the CG source is constant, our condenser requires just a constant number of blocks t to produce an output with entropy rate 0.9, say. In the low entropy regime, using t=poly(n) blocks, our condenser can achieve output entropy rate 0.9 even if each block has just 1 bit of min-entropy. Moreover, these condensers have exponentially small error. Finally, we provide strong existential and impossibility results. For our existential result, we show that a random function is a seedless condenser (with surprisingly strong parameters) for any small family of sources. As a corollary, we get new existential results for seeded condensers and condensers for CG sources. For our impossibility result, we show the latter result is nearly tight, by giving a simple proof that the output of any condenser for CG sources must inherit the entropy gap of (one block of) its input. 
    more » « less
  5. Santhanam, Rahul (Ed.)
    Affine extractors give some of the best-known lower bounds for various computational models, such as AC⁰ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudlák, and Talebanfard (CCC' 22) introduced a stronger version of affine extractors known as directional affine extractors, together with a generalization of ROBPs where each node can make linear queries, and showed that the former implies strong lower bound for a certain type of the latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case complexity 2^{n/3-o(n)} against SROLBPs with exponentially small correlation. A follow-up work by Chattopadhyay and Liao (CCC' 23) improves the hardness to 2^{n-o(n)} at the price of increasing the correlation to polynomially large, via a new connection to sumset extractors introduced by Chattopadhyay and Li (STOC' 16) and explicit constructions of such extractors by Chattopadhyay and Liao (STOC' 22). Both works left open the questions of better constructions of directional affine extractors and improved average-case complexity against SROLBPs in the regime of small correlation. This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and ROBPs. Our main results include: - An explicit construction of directional affine extractors with k = o(n) and exponentially small error, which gives average-case complexity 2^{n-o(n)} against SROLBPs with exponentially small correlation, thus answering the two open questions raised in previous works. - An explicit function in AC⁰ that gives average-case complexity 2^{(1-δ)n} against ROBPs with negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is known, and the best size lower bound for any function in AC⁰ against ROBPs is 2^Ω(n). One of the key ingredients in our constructions is a new linear somewhere condenser for affine sources, which is based on dimension expanders. The condenser also leads to an unconditional improvement of the entropy requirement of explicit affine extractors with negligible error. We further show that the condenser also works for general weak random sources, under the Polynomial Freiman-Ruzsa Theorem in 𝖥₂ⁿ, recently proved by Gowers, Green, Manners, and Tao (arXiv' 23). 
    more » « less
  6. Random linear codes (RLCs) are well known to have nice combinatorial properties and near-optimal parameters in many different settings. However, getting explicit constructions matching the parameters of RLCs is challenging, and RLCs are hard to decode efficiently. This motivated several previous works to study the problem of partially derandomizing RLCs, by applying certain operations to an explicit mother code. Among them, one of the most well studied operations is random puncturing, where a series of works culminated in the work of Guruswami and Mosheiff (FOCS’ 22), which showed that a random puncturing of a low-biased code is likely to possess almost all interesting local properties of RLCs. In this work, we provide an in-depth study of another, dual operation of random puncturing, known as random shortening, which can be viewed equivalently as random puncturing on the dual code. Our main results show that for any small , by starting from a mother code with certain weaker conditions (e.g., having a large distance) and performing a random (or even pseudorandom) shortening, the new code is -biased with high probability. Our results hold for any field size and yield a shortened code with constant rate. This can be viewed as a complement to random puncturing, and together, we can obtain codes with properties like RLCs from weaker initial conditions. Our proofs involve several non-trivial methods of estimating the weight distribution of codewords, which may be of independent interest. 
    more » « less
  7. Longest Increasing Subsequence (LIS) is a fundamental problem in combinatorics and computer science. Previously, there have been numerous works on both upper bounds and lower bounds of the time complexity of computing and approximating , yet only a few on the equally important space complexity. In this paper, we further study the space complexity of computing and approximating LIS in various models. Specifically, we prove non-trivial space lower bounds in the following two models: (1) the adaptive query-once model or read-once branching programs, and (2) the streaming model where the order of streaming is different from the natural order. As far as we know, there are no previous works on the space complexity of LIS in these models. Besides the bounds, our work also leaves many intriguing open problems. 
    more » « less