In many real-world applications such as social network analysis and online advertising/marketing, one of the most important and popular problems is called influence maximization (IM), which finds a set of k seed users that maximize the expected number of influenced user nodes. In practice, however, maximizing the number of influenced nodes may be far from satisfactory for real applications such as opinion promotion and collective buying. In this paper, we explore the importance of stability and triangles in social networks, and formulate a novel problem in the influence spread scenario, named triangular stability maximization , over social networks, and generalize it to a general triangle influence maximization problem, which is proved to be NP-hard. We develop an efficient reverse influence sampling (RIS) based framework for the triangle IM with theoretical guarantees. To enable unbiased estimators, it demands probabilistic sampling of triangles, that is, sampling triangles according to their probabilities. We propose an edge-based triple sampling approach, which is exactly equivalent to probabilistic sampling and avoids costly triangle enumeration and materialization. We also design several pruning and reduction techniques, as well as a cost-model-guided heuristic algorithm. Extensive experiments and a case study over real-world graphs confirm the effectiveness of our proposed algorithms and the superiority of triangular stability maximization and triangle influence maximization. 
                        more » 
                        « less   
                    
                            
                            Graph Bayesian Optimization for Multiplex Influence Maximization
                        
                    
    
            Influence maximization (IM) is the problem of identifying a limited number of initial influential users within a social network to maximize the number of influenced users. However, previous research has mostly focused on individual information propagation, neglecting the simultaneous and interactive dissemination of multiple information items. In reality, when users encounter a piece of information, such as a smartphone product, they often associate it with related products in their minds, such as earphones or computers from the same brand. Additionally, information platforms frequently recommend related content to users, amplifying this cascading effect and leading to multiplex influence diffusion.This paper first formulates the Multiplex Influence Maximization (Multi-IM) problem using multiplex diffusion models with an information association mechanism. In this problem, the seed set is a combination of influential users and information. To effectively manage the combinatorial complexity, we propose Graph Bayesian Optimization for Multi-IM (GBIM). The multiplex diffusion process is thoroughly investigated using a highly effective global kernelized attention message-passing module. This module, in conjunction with Bayesian linear regression (BLR), produces a scalable surrogate model. A data acquisition module incorporating the exploration-exploitation trade-off is developed to optimize the seed set further.Extensive experiments on synthetic and real-world datasets have proven our proposed framework effective. The code is available at https://github.com/zirui-yuan/GBIM. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2153369
- PAR ID:
- 10505925
- Publisher / Repository:
- Association for the Advancement of Artificial Intelligence
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 20
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 22475 to 22483
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Influence Maximization (IM) is a crucial problem in data science. The goal is to find a fixed-size set of highly influentialseedvertices on a network to maximize the influence spread along the edges. While IM is NP-hard on commonly used diffusion models, a greedy algorithm can achieve (1 - 1/e)-approximation by repeatedly selecting the vertex with the highestmarginal gainin influence as the seed. However, we observe two performance issues in the existing work that prevent them from scaling to today's large-scale graphs: space-inefficient memorization to estimate marginal gain, and time-inefficient seed selection process due to a lack of parallelism. This paper significantly improves the scalability of IM using two key techniques. The first is asketch-compressiontechnique for the independent cascading model on undirected graphs. It allows combining the simulation and sketching approaches to achieve a time-space tradeoff. The second technique includes new data structures for parallel seed selection. Using our new approaches, we implementedPaC-IM: Parallel and Compressed IM. We comparePaC-IMwith state-of-the-art parallel IM systems on a 96-core machine with 1.5TB memory.PaC-IMcan process the ClueWeb graph with 978M vertices and 75B edges in about 2 hours. On average, across all tested graphs, our uncompressed version is 5--18x faster and about 1.4x more space-efficient than existing parallel IM systems. Using compression further saves 3.8x space with only 70% overhead in time on average.more » « less
- 
            We consider the problem of Influence Maximization (IM), the task of selecting k seed nodes in a social network such that the expected number of nodes influenced is maximized. We propose a community-aware divide-and-conquer framework that involves (i) learning the inherent community structure of the social network, (ii) generating candidate solutions by solving the influence maximization problem for each community, and (iii ) selecting the final set of seed nodes using a novel progressiv e budgeting scheme. Our experiments on real-world social networks show that the proposed framework outperforms the standard methods in terms of run-time and the heuristic methods in terms of influence. We also study the effect of the community structure on the performance of the proposed framework. Our experiments sho w that the community structures with higher modularity lead the proposed framework to perform better in terms of run-time an d influence.more » « less
- 
            Influence maximization aims to select k most-influential vertices or seeds in a network, where influence is defined by a given diffusion process. Although computing optimal seed set is NP-Hard, efficient approximation algorithms exist. However, even state-of-the-art parallel implementations are limited by a sampling step that incurs large memory footprints. This in turn limits the problem size reach and approximation quality. In this work, we study the memory footprint of the sampling process collecting reverse reachability information in the IMM (Influence Maximization via Martingales) algorithm over large real-world social networks. We present a memory-efficient optimization approach (called HBMax) based on Ripples, a state-of-the-art multi-threaded parallel influence maximization solution. Our approach, HBMax, uses a portion of the reverse reachable (RR) sets collected by the algorithm to learn the characteristics of the graph. Then, it compresses the intermediate reverse reachability information with Huffman coding or bitmap coding, and queries on the partially decoded data, or directly on the compressed data to preserve the memory savings obtained through compression. Considering a NUMA architecture, we scale up our solution on 64 CPU cores and reduce the memory footprint by up to 82.1% with average 6.3% speedup (encoding overhead is offset by performance gain from memory reduction) without loss of accuracy. For the largest tested graph Twitter7 (with 1.4 billion edges), HBMax achieves 5.9× compression ratio and 2.2× speedup.more » « less
- 
            Influence maximization problem attempts to find a small subset of nodes that makes the expected influence spread maximized, which has been researched intensively before. They all assumed that each user in the seed set we select is activated successfully and then spread the influence. However, in the real scenario, not all users in the seed set are willing to be an influencer. Based on that, we consider each user associated with a probability with which we can activate her as a seed, and we can attempt to activate her many times. In this article, we study the adaptive influence maximization with multiple activations (Adaptive-IMMA) problem, where we select a node in each iteration, observe whether she accepts to be a seed, if yes, wait to observe the influence diffusion process; if no, we can attempt to activate her again with a higher cost or select another node as a seed. We model the multiple activations mathematically and define it on the domain of integer lattice. We propose a new concept, adaptive dr-submodularity, and show our Adaptive-IMMA is the problem that maximizing an adaptive monotone and dr-submodular function under the expected knapsack constraint. Adaptive dr-submodular maximization problem is never covered by any existing studies. Thus, we summarize its properties and study its approximability comprehensively, which is a non-trivial generalization of existing analysis about adaptive submodularity. Besides, to overcome the difficulty to estimate the expected influence spread, we combine our adaptive greedy policy with sampling techniques without losing the approximation ratio but reducing the time complexity. Finally, we conduct experiments on several real datasets to evaluate the effectiveness and efficiency of our proposed policies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    