skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-assembly of nanocrystal checkerboard patterns via non-specific interactions
Abstract Checkerboard lattices—where the resulting structure is open, porous, and highly symmetric—are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air–water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials.  more » « less
Award ID(s):
2011924
PAR ID:
10506060
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
NPJ
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Directional interactions that generate regular coordination geometries are a powerful means of guiding molecular and colloidal self-assembly, but implementing such high-level interactions with proteins remains challenging due to their complex shapes and intricate interface properties. Here we describe a modular approach to protein nanomaterial design inspired by the rich chemical diversity that can be generated from the small number of atomic valencies. We design protein building blocks using deep learning-based generative tools, incorporating regular coordination geometries and tailorable bonding interactions that enable the assembly of diverse closed and open architectures guided by simple geometric principles. Experimental characterization confirms the successful formation of more than 20 multicomponent polyhedral protein cages, two-dimensional arrays and three-dimensional protein lattices, with a high (10%–50%) success rate and electron microscopy data closely matching the corresponding design models. Due to modularity, individual building blocks can assemble with different partners to generate distinct regular assemblies, resulting in an economy of parts and enabling the construction of reconfigurable networks for designer nanomaterials. 
    more » « less
  2. Abstract Image Advances in the synthesis and self-assembly of nanocrystals have enabled researchers to create a plethora of different nanoparticle superlattices. But while many superlattices with complex types of translational order have been realized, rotational order of nanoparticle building blocks within the lattice is more difficult to achieve. Self-assembled superstructures with atomically coherent nanocrystal lattices, which are desirable due to their exceptional electronic and optical properties, have been fabricated only for a few selected systems. Here, we combine experiments with molecular dynamics (MD) simulations to study the self-assembly of heterostructural nanocrystals (HNCs), consisting of a near-spherical quantum dot (QD) host decorated with a small number of epitaxially grown gold nanocrystal (Au NC) “patches”. Self-assembly of these HNCs results in face-centered-cubic (fcc) superlattices with well-defined orientational relationships between the atomic lattices of both QD hosts and Au patches. MD simulations indicate that the observed dual atomic coherence is linked to the number, size, and relative positions of gold patches. This study provides a strategy for the design and fabrication of NC superlattices with large structural complexity and delicate orientational order. 
    more » « less
  3. Semiconductor nanocrystals (NCs) can function as efficient gain materials with chemical versatility because of their surface ligands. Because the properties of NCs in solution are sensitive to ligand–environment interactions, local chemical changes can result in changes in the optical response. However, amplification of the optical response is technically challenging because of colloidal instability at NC concentrations needed for sufficient gain to overcome losses. This paper demonstrates liquid lasing from plasmonic lattice cavities integrated with ligand-engineered CdZnS/ZnS NCs dispersed in toluene and water. By taking advantage of calcium ion-induced aggregation of NCs in aqueous solutions, we show how lasing threshold can be used as a transduction signal for ion detection. Our work highlights how NC solutions and plasmonic lattices with open cavity architectures can serve as a biosensing platform for lab-on-chip devices. 
    more » « less
  4. We measure and model monolayers of concentrated diffusing colloidal probes interacting with polymerized liquid crystal (PLC) planar surfaces. At topological defects in local nematic director profiles at PLC surfaces, we observe time-averaged two-dimensional particle density profiles of diffusing colloidal probes that closely correlate with spatial variations in PLC optical properties. An inverse Monte Carlo analysis of particle concentration profiles yields two-dimensional PLC interfacial energy landscapes on the kT -scale, which is the inherent scale of many interfacial phenomena ( e.g. , self-assembly, adsorption, diffusion). Energy landscapes are modelled as the superposition of macromolecular repulsion and van der Waals attraction based on an anisotropic dielectric function obtained from the liquid crystal birefringence. Modelled van der Waals landscapes capture most net energy landscape variations and correlate well with experimental PLC director profiles around defects. Some energy landscape variations near PLC defects indicate either additional local repulsive interactions or possibly the need for more rigorous van der Waals models with complete spectral data. These findings demonstrate direct, sensitive measurements of kT -scale van der Waals energy landscapes at PLC interfacial defects and suggest the ability to design interfacial anisotropic materials and van der Waals energy landscapes for colloidal assembly. 
    more » « less
  5. Abstract Nanoparticles form long‐range micropatterns via self‐assembly or directed self‐assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle‐template interactions (e.g., physical confinement, chemical functionalization, additive layer‐upon‐layer). The review commences with a general overview of nanoparticle self‐assembly, with the state‐of‐the‐art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non‐templated and pre‐templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly. 
    more » « less