To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)2Te3 thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped Bi2Te3 thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped Bi2Te3 thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman–Kittel–Kasuya–Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect.
more »
« less
Implementing microwave impedance microscopy in a dilution refrigerator
We report the implementation of a dilution refrigerator-based scanning microwave impedance microscope with a base temperature of ∼100 mK. The vibration noise of our apparatus with tuning-fork feedback control is as low as 1 nm. Using this setup, we have demonstrated the imaging of quantum anomalous Hall states in magnetically (Cr and V) doped (Bi, Sb)2Te3 thin films grown on mica substrates. Both the conductive edge modes and topological phase transitions near the coercive fields of Cr- and V-doped layers are visualized in the field-dependent results. Our study establishes the experimental platform for investigating nanoscale quantum phenomena at ultralow temperatures.
more »
« less
- Award ID(s):
- 1936383
- PAR ID:
- 10506062
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 94
- Issue:
- 5
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chromium-doped SrTiO 3 nanocrystals of perovskite structure type and 45 nm (±15 nm) edge lengths were obtained by hydrothermal synthesis in water from titanium oxide, strontium hydroxide, and chromium( iii ) nitrate. According to XPS, the majority of the surface chromium (68.3%) is present in the 3+ state and the remainder (32.2%) in the 6+ state. Optical spectroscopy confirms a broad absorption at 2.3–2.9 eV from Cr(3+) dopant states, in addition to the 3.2 eV band edge of the SrTiO 3 host. After modification with Pt nanoparticles, Cr-doped SrTiO 3 nanocrystals catalyze photochemical H 2 evolution from aqueous methanol under visible light illumination (>400 nm) and with an apparent quantum yield of 0.66% at 435 nm. According to surface photovoltage spectroscopy (SPS), Cr-doped SrTiO 3 nanocrystals deposited onto gold substrates are n-type and have an effective band gap of 1.75 eV. SPS and transient illumination experiments at 2.50 eV reveal an anomalous surface photovoltage that increases with prior light exposure to values of up to −6.3 V. This photovoltage is assigned to ferroelectric polarization of the material in the space charge layer at the Au/SrTiO 3 :Cr interface. The polarization is stable for 24 h in vacuum but disappears after 12 h when samples are stored in air. The electric polarizability of SrTiO 3 :Cr is confirmed when films are exposed to static electric fields (1.20 MV m −1 ) in a fixed capacitor configuration. The discovery of a ferroelectric effect in Cr-doped SrTiO 3 could be significant for the development of improved photocatalysts for the conversion of solar energy into fuel.more » « less
-
We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated by deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system.more » « less
-
Abstract The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr‐doped (Bi,Sb)2Te3(CBST) grown on an uncompensated antiferromagnetic insulator Al‐doped Cr2O3. Through polarized neutron reflectometry (PNR), a strong exchange coupling is found between CBST and Al‐Cr2O3surface spins fixing interfacial magnetic moments perpendicular to the film plane. The interfacial coupling results in an exchange‐biased QAH effect. This study further demonstrates that the magnitude and sign of the exchange bias can be effectively controlled using a field training process to set the magnetization of the Al‐Cr2O3layer. It demonstrates the use of the exchange bias effect to effectively manipulate the QAH state, opening new possibilities in QAH‐based spintronics.more » « less
-
Abstract Integration of a quantum anomalous Hall insulator with a magnetically ordered material provides an additional degree of freedom through which the resulting exotic quantum states can be controlled. Here, an experimental observation is reported of the quantum anomalous Hall effect in a magnetically‐doped topological insulator grown on the antiferromagnetic insulator Cr2O3. The exchange coupling between the two materials is investigated using field‐cooling‐dependent magnetometry and polarized neutron reflectometry. Both techniques reveal strong interfacial interaction between the antiferromagnetic order of the Cr2O3and the magnetic topological insulator, manifested as an exchange bias when the sample is field‐cooled under an out‐of‐plane magnetic field, and an exchange spring‐like magnetic depth profile when the system is magnetized within the film plane. These results identify antiferromagnetic insulators as suitable candidates for the manipulation of magnetic and topological order in topological insulator films.more » « less