Significance Historically, battery self-heating has been viewed negatively as an undesirable attribute. However, we report that battery self-heat, if properly controlled, can smoothen dendritic features in potassium metal batteries. This could open the door to high gravimetric and volumetric energy density potassium-ion batteries that could offer a sustainable and low-cost alternative to the incumbent lithium-ion technology.
more »
« less
Quantitative analysis of sodium metal deposition and interphase in Na metal batteries
Sodium-ion batteries exhibit significant promise as a viable alternative to current lithium-ion technologies owing to their sustainability, low cost per energy density, reliability, and safety.
more »
« less
- Award ID(s):
- 2011924
- PAR ID:
- 10506066
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Energy & Environmental Science
- Volume:
- 17
- Issue:
- 3
- ISSN:
- 1754-5692
- Page Range / eLocation ID:
- 1216 to 1228
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a tunable metal ion beam that delivers controllable ion currents in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed by sequential atomic evaporation and single or multiple electron impact ionization, followed by acceleration into a sensing region. Controllability of the ionic charge state is achieved through tuning of electrode potentials that influence the retention time in the ionization region. Barium, lead, and cadmium samples have been used to test the system, with ion currents identified and quantified using a quadrupole mass analyzer. Realization of a clean Ba2+ ion beam within a bench-top system represents an important technical advance toward the development and characterization of barium tagging systems for neutrinoless double beta decay searches in xenon gas. This system also provides a testbed for investigation of novel ion sensing methodologies for environmental assay applications, with dication beams of Pb2+and Cd2+also demonstrated for this purpose.more » « less
-
Many biological macromolecules rely on metal ions to maintain structural integrity and control their regulatory function. In biological fluids, detection and identification of metal ions requires sensitive analytical tools with clear readouts. In this work, we sought to investigate the potential of solution Nuclear Magnetic Resonance (NMR) spectroscopy to analyze metal ion solutions and mixtures. To enable 1H NMR detection, we prepared the complexes of eight metal ions with the chelating agent, 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The 1H NMR spectra were collected for BAPTA samples as a function of metal ion concentrations. The analysis of NMR data revealed that all metal ions with a notable exception of Mg2+ bind BAPTA with high affinities and form complexes with 1:1 metal-to-chelator stoichiometry. Both methylene and aromatic regions of the BAPTA 1H NMR spectra experience significant changes upon the metal ion complex formation. We identified the spectroscopic signatures of trivalent and paramagnetic ions and demonstrated that the binary Zn2+/Pb2+ metal ion mixture can be successfully analyzed by NMR. We conclude that complexation with BAPTA followed by the 1H NMR analysis is a sensitive method to detect and identify both nutritive and xenobiotic metal ions.more » « less
-
Abstract In this review, recent research efforts that aimed at developing nanopore sensors for detection of metal ions, which play a crucial role in environmental safety and human health, are highlighted. Protein pores use three stochastic sensing‐based strategies for metal ion detection. The first strategy is to construct engineered nanopores with metal ion binding sites, so that the interaction between the target analytes and the nanopore can slow the movement of metal ions in the nanochannel. Second, large molecules such as nucleic acids and especially peptides can be utilized as external selective molecular probes to detect metal ions based on the conformational change of the ligand molecules induced by the metal ion–ligand chelation/coordination interaction. Third, enzymatic reactions can also be used as an alternative to the molecule probe strategy in the situation that a sensitive and selective probe molecule for the target analyte is difficult to obtain. On the other hand, by taking advantage of steady‐state analysis, synthetic nanopores mainly use two strategies (modification and modification‐free) to detect metals. Given the advantages of high sensitivity and selectivity, and label‐free detection, nanopore‐based metal ion sensors should find useful application in many fields, including environmental monitoring, medical diagnosis, and so on.more » « less
-
Metal-ion-linked molecular multilayers on metal oxide surfaces are promising for applications ranging from solar energy conversion to sensing. Most of these applications rely on energy and electron transfer between layers/molecules which can be envisioned to occur via intra-assembly (IA; between metal-ion-linked molecules) and interlayer (IL; between separate layers of nonlinked molecules) processes. Here, we describe our effort to differentiate between IL and IA energy transfer using a bilayer composed of ZrO2, a phosphonated anthracene derivative (A), a zinc(II) linking ion, and a Pt(II)porphyrin (P). Both time-resolved emission and transient absorption measurements show no impact of diluting the anthracene layer with a spectroscopically inert spacer on the rate of 1A* to P and 3P* to A, singlet, and triplet energy transfer, respectively. These results indicate that energy transfer within the metal-ion-linked assembly (i.e., ZrO2-A–Zn-P) is more rapid than with an adjacent, nonlinked A molecule, even for a P derivative capable of laying down on the surface. These insights are an important step toward structural design principles maximizing the efficiency/rate of energy transfer in multilayer assemblies.more » « less
An official website of the United States government

