skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differentiating Intra-Assembly and Interlayer Energy Transfer in Metal-Ion-Linked Molecular Multilayers
Metal-ion-linked molecular multilayers on metal oxide surfaces are promising for applications ranging from solar energy conversion to sensing. Most of these applications rely on energy and electron transfer between layers/molecules which can be envisioned to occur via intra-assembly (IA; between metal-ion-linked molecules) and interlayer (IL; between separate layers of nonlinked molecules) processes. Here, we describe our effort to differentiate between IL and IA energy transfer using a bilayer composed of ZrO2, a phosphonated anthracene derivative (A), a zinc(II) linking ion, and a Pt(II)porphyrin (P). Both time-resolved emission and transient absorption measurements show no impact of diluting the anthracene layer with a spectroscopically inert spacer on the rate of 1A* to P and 3P* to A, singlet, and triplet energy transfer, respectively. These results indicate that energy transfer within the metal-ion-linked assembly (i.e., ZrO2-A–Zn-P) is more rapid than with an adjacent, nonlinked A molecule, even for a P derivative capable of laying down on the surface. These insights are an important step toward structural design principles maximizing the efficiency/rate of energy transfer in multilayer assemblies.  more » « less
Award ID(s):
2327754 2102579
PAR ID:
10572084
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
128
Issue:
40
ISSN:
1932-7447
Page Range / eLocation ID:
16861 to 16868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metal ion linked multilayers offer a means of controlling interfacial energy and electron transfer for a range of applications including solar energy conversion, catalysis, sensing, and more. Despite the importance of structure to these interlayer transfer processes, little is known about the distance and orientation between the molecules/surface of these multilayer films. Here we gain structural insights into these assemblies using a combination of UV-Vis polarized visible attenuated total reflectance (p-ATR) and Förster Resonance Energy Transfer (FRET) measurements. The bilayer of interest is composed of a metal oxide surface, phosphonated anthracene molecule, Zn(II) linking ion, and a platinum porphyrin with one (P1), two (P2), or three (P3) phenylene spacers between the chromophoric core and the metal ion binding carboxylate group. As observed by both time-resolved emission and transient absorption, the FRET rate and efficiency decreases with an increasing number of phenylene spacers (P1 > P2 > P3). However, from p-ATR measurements we observe a change in orientation of porphyrins in the bilayer, which inhibits a uniform determination of the orientation factor (κ2) across the series. Instead, we narrow the scope of viable structures by determining the best agreement between experimental and calculated FRET efficiencies. Additionally, we provide evidence that suggests, for the first time, that the bilayer structure is similar on both planar and mesoporous substrates. 
    more » « less
  2. Metal ion-linked multilayers have emerged as a simple and modular means of assembling molecular components on an inorganic substrate. The choice of molecules, based on their excited state energies and redox potentials, has enabled the directional control of energy and electron transfer events for application in electrochromics, solar energy harvesting, molecular rectifiers, photocatalysis, and more. Here, we recount the more than 35-year journey of metal ion-linked multilayers and their transition from planar to mesoporous substrates and from homogeneous to heterogeneous multilayers. This includes showcasing the vast range of components (i.e., substrates, metal ions, and molecules), structural insights, and applications. We also highlight current limitations in our knowledge of and ability to control these systems which must be overcome to realize the full potential of metal ion-linked multilayers. 
    more » « less
  3. Self-assembly of molecular multilayers via metal ion linkages has become an important strategy for interfacial engineering of metalloid and metal oxide (MOx) substrates, with applications in numerous areas, including energy harvesting, catalysis, and chemical sensing. An important aspect for the rational design of these multilayers is knowledge of the molecular structure–function relationships. For example, in a multilayer composed of different chromophores in each layer, the molecular orientation of each layer, both relative to the adjacent layers and the substrate, influences the efficiency of vectorial energy and electron transfer. Here, we describe an approach using UV–vis attenuated total reflection (ATR) spectroscopy to determine the mean dipole tilt angle of chromophores in each layer in a metal ion-linked trilayer self-assembled on indium-tin oxide. To our knowledge, this is the first report demonstrating the measurement of the orientation of three different chromophores in a single assembly. The ATR approach allows the adsorption of each layer to be monitored in real-time, and any changes in the orientation of an underlying layer arising from the adsorption of an overlying layer can be detected. We also performed transient absorption spectroscopy to monitor interlayer energy transfer dynamics in order to relate structure to function. We found that near unity efficiency, sub-nanosecond energy transfer between the third and second layer was primarily dictated by the distance between the chromophores. Thus, in this case, the orientation had minimal impact at such proximity. 
    more » « less
  4. Polyyne bridges have attracted extensive interest as molecular wires due to their shallow distance dependence during charge transfer. Here, we investigate whether triplet energy transfer from cadmium selenide (CdSe) quantum dots (QDs) to anthracene acceptors benefits from the high conductance associated with polyyne bridges, especially from the potential cumulene character in their excited states. Introducing π-electron rich oligoyne bridges between the surface-bound anthracene-based transmitter ligands, we explore the triplet energy transfer rate between the CdSe QDs and anthracene core. Our femtosecond transient absorption results reveal that a rate constant damping coefficient of β is 0.118 ± 0.011 Å−1, attributed to a through-bond coupling mechanism facilitated by conjugation among the anthracene core, the oligoyne bridges, and the COO⊖ anchoring group. In addition, oligoyne bridges lower the T1 energy level of the anthracene-based transmitters, enabling efficient triplet energy transfer from trapped excitons in CdSe QDs. Density-functional theory calculations suggest a slight cumulene character in these oligoyne bridges during triplet energy transfer, with diminished bond length alternation. This work demonstrates the potential of oligoyne bridges in mediating long-distance energy transfer. 
    more » « less
  5. Intermolecular interactions on inorganic substrates can have a critical impact on the electrochemical and photophysical properties of the materials and subsequent performance in hybrid electronics. Critical to the intentional formation or inhibition of these processes is controlling interactions between molecules on a surface. In this report, we investigated the impact of surface loading and atomic-layer-deposited Al2O3 overlayers on the intermolecular interactions of a ZrO2-bound anthracene derivative as probed by the photophysical properties of the interface. While surface loading density had no impact on the absorption spectra of the films, there was an increase in excimer features with surface loading as observed by both emission and transient absorption. The addition of ALD overlayers of Al2O3 resulted in a decrease in excimer formation, but the emission and transient absorption spectra were still dominated by excimer features. These results suggest that ALD may provide a post-surface loading means of influencing such intermolecular interactions. 
    more » « less