Multiple species of ticks, including Ixodes scapularis (Say, Ixodida:Ixodidae), Amblyomma americanum (L., Ixodida:Ixodidae), and Dermacentor variabilis (Say, Ixodida:Ixodidae), occur in high and increasing abundance in both the northeast and southeast United States. North Carolina is at the nexus of spread of these species, with high occurrence and abundance of I. scapularis to the north and A. americanum to the south. Despite this, there are few records of these species in the Piedmont of North Carolina, including the greater Charlotte metropolitan area. Here, we update the known occurrence and abundance of these species in the North Carolina Piedmont. We surveyed for ticks using cloth drags, CO2 traps, and leaf litter samples at a total of 79 sites within five locations: Mecklenburg County, South Mountains State Park, Stone Mountain State Park, Duke Forest, and Morrow Mountain State Park, all in North Carolina, during the late spring, summer, and fall seasons of 2019. From these surveys, we had only 20 tick captures, illuminating the surprisingly low abundance of ticks in this region of North Carolina. Our results indicate the possibility of underlying habitat and host factors limiting tick distribution and abundance in the North Carolina Piedmont. 
                        more » 
                        « less   
                    
                            
                            Phenology of five tick species in the central Great Plains
                        
                    
    
            The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020–2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species wasA.americanum(24098, 97%) followed byDermacentor variabilis(370, 2%),D.albipictus(271, 1%),Ixodes scapularis(91, <1%)and A.maculatum(38, <1%).Amblyomma americanum,A.maculatum and D.variabiliswere active in Spring and Summer, whileD.albipictus and I.scapulariswere active in Fall and Winter. Factors associated with numbers of individuals ofA.americanumincluded day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1920946
- PAR ID:
- 10506192
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- Becker, Daniel
- Publisher / Repository:
- Public Library of Science (PLOS)
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0302689
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Stevenson, Brian (Ed.)Ticks are the most important vectors of zoonotic disease-causing pathogens in North America and Europe. Many tick species are expanding their geographic range. Although correlational evidence suggests that climate change is driving the range expansion of ticks, experimental evidence is necessary to develop a mechanistic understanding of ticks’ response to a range of climatic conditions. Previous experiments used simulated microclimates, but these protocols require hazardous salts or expensive laboratory equipment to manipulate humidity. We developed a novel, safe, stable, convenient, and economical method to isolate individual ticks and manipulate their microclimates. The protocol involves placing individual ticks in plastic tubes, and placing six tubes along with a commercial two-way humidity control pack in an airtight container. We successfully used this method to investigate how humidity affects survival and host-seeking (questing) behavior of three tick species: the lone star tick ( Amblyomma americanum ), American dog tick ( Dermacentor variabilis ), and black-legged tick ( Ixodes scapularis ). We placed 72 adult females of each species individually into plastic tubes and separated them into three experimental relative humidity (RH) treatments representing distinct climates: 32% RH, 58% RH, and 84% RH. We assessed the survival and questing behavior of each tick for 30 days. In all three species, survivorship significantly declined in drier conditions. Questing height was negatively associated with RH in Amblyomma , positively associated with RH in Dermacentor , and not associated with RH in Ixodes . The frequency of questing behavior increased significantly with drier conditions for Dermacentor but not for Amblyomma or Ixodes . This report demonstrates an effective method for assessing the viability and host-seeking behavior of tick vectors of zoonotic diseases under different climatic conditions.more » « less
- 
            Abstract Ticks are vectors of many diseases and are expanding in geographic distribution. However, how ticks will fare in their new environments, where they may experience stressful climatic conditions at the expansion front, remains unclear. Since there is a trade‐off in ticks between behaviors that promote longevity and behaviors that promote reproduction, we hypothesized that extreme climatic stress reduces the survivorship of ticks but increases the frequency of tick host‐seeking behavior, or questing. Here, we used a novel method to simulate climatic stress on individual ticks of three species—Amblyomma americanum,Dermacentor variabilis, andIxodes scapularis—to evaluate their survival, physiology, and questing behavior. The first experiment involved placing 144 adult ticks of each species in two temperature ranges (15–25°C and 25–35°C) and three relative humidity (RH) treatments (32%, 58%, and 84% RH). We assessed the ticks daily for survivorship and questing, and we measured water loss by comparing the mass of each tick when it died to when it was fully hydrated. In this first experiment, ticks in warmer and less humid conditions generally died faster than those in cooler and more humid conditions. Ticks of all three species were more likely to quest shortly before their death and consistently died after losing approximately 50%–56% of their total body water content, butIxodesreached that threshold much faster than the other two species. The second experiment involved placing 18 ticks of each species at 35°C and 32% RH. We assessed the ticks every 3 h for survivorship, questing, and water loss. Ticks again were more likely to quest shortly before their death. With frequent checks, we were able to measure the dehydration tolerance more accurately and the rate of water loss. Ticks of all three species consistently died after losing approximately 51% of their total body water content. However,Ixodeslost water approximately 5 times faster thanAmblyommaand 11 times faster thanDermacentor. These results demonstrate that severe climatic stress tilts the trade‐off toward higher questing rates but not higher overall questing time because of reduced survival rates.more » « less
- 
            null (Ed.)Ticks rank high among arthropod vectors in terms of numbers of infectious agents that they transmit to humans, including Lyme disease, Rocky Mountain spotted fever, Colorado tick fever, human monocytic ehrlichiosis, tularemia, and human granulocytic anaplasmosis. Increasing temperature is suspected to affect tick biting rates and pathogen developmental rates, thereby potentially increasing risk for disease incidence. Tick distributions respond to climate change, but how their geographic ranges will shift in future decades and how those shifts may translate into changes in disease incidence remain unclear. In this study, we have assembled correlative ecological niche models for eight tick species of medical or veterinary importance in North America (Ixodes scapularis, I. pacificus, I. cookei, Dermacentor variabilis, D. andersoni, Amblyomma americanum, A. maculatum, and Rhipicephalus sanguineus), assessing the distributional potential of each under both present and future climatic conditions. Our goal was to assess whether and how species’ distributions will likely shift in coming decades in response to climate change. We interpret these patterns in terms of likely implications for tick-associated diseases in North America.more » « less
- 
            Abstract Background The incidence of tick-borne disease has increased dramatically in recent decades, with urban areas increasingly recognized as high-risk environments for exposure to infected ticks. Green spaces may play a key role in facilitating the invasion of ticks, hosts and pathogens into residential areas, particularly where they connect residential yards with larger natural areas (e.g. parks). However, the factors mediating tick distribution across heterogeneous urban landscapes remain poorly characterized. Methods Using generalized linear models in a multimodel inference framework, we determined the residential yard- and local landscape-level features associated with the presence of three tick species of current and growing public health importance in residential yards across Staten Island, a borough of New York City, in the state of New York, USA. Results The amount and configuration of canopy cover immediately surrounding residential yards was found to strongly predict the presence of Ixodes scapularis and Amblyomma americanum , but not that of Haemaphysalis longicornis . Within yards, we found a protective effect of fencing against I. scapularis and A. americanum, but not against H. longicornis . For all species, the presence of log and brush piles strongly increased the odds of finding ticks in yards. Conclusions The results highlight a considerable risk of tick exposure in residential yards in Staten Island and identify both yard- and landscape-level features associated with their distribution. In particular, the significance of log and brush piles for all three species supports recommendations for yard management as a means of reducing contact with ticks. Graphical Abstractmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    