Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we fortuitously discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue growth of an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational models suggested that adenine externalization occurs via passive diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that accumulation and externalization of adenine stems from an adenine salvage bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 15 of the strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt orientation, but apt orientation alone could not explain adenine externalization in some strains. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.
more »
« less
Copper ions inhibit pentose phosphate pathway function in Staphylococcus aureus
To gain a better insight of how Copper (Cu) ions toxify cells, metabolomic analyses were performed inS.aureusstrains that lacks the described Cu ion detoxification systems (ΔcopBLΔcopAZ;cop-). Exposure of thecop-strain to Cu(II) resulted in an increase in the concentrations of metabolites utilized to synthesize phosphoribosyl diphosphate (PRPP). PRPP is created using the enzyme phosphoribosylpyrophosphate synthetase (Prs) which catalyzes the interconversion of ATP and ribose 5-phosphate to PRPP and AMP. Supplementing growth medium with metabolites requiring PRPP for synthesis improved growth in the presence of Cu(II). A suppressor screen revealed that a strain with a lesion in the gene coding adenine phosphoribosyltransferase (apt) was more resistant to Cu. Apt catalyzes the conversion of adenine with PRPP to AMP. Theaptmutant had an increased pool of adenine suggesting that the PRPP pool was being redirected. Over-production ofapt, or alternate enzymes that utilize PRPP, increased sensitivity to Cu(II). Increasing or decreasing expression ofprsresulted in decreased and increased sensitivity to growth in the presence of Cu(II), respectively. We demonstrate that Prs is inhibited by Cu ionsin vivoandin vitroand that treatment of cells with Cu(II) results in decreased PRPP levels. Lastly, we establish thatS.aureusthat lacks the ability to remove Cu ions from the cytosol is defective in colonizing the airway in a murine model of acute pneumonia, as well as the skin. The data presented are consistent with a model wherein Cu ions inhibits pentose phosphate pathway function and are used by the immune system to preventS.aureusinfections.
more »
« less
- Award ID(s):
- 1750624
- PAR ID:
- 10506218
- Editor(s):
- Peschel, Andreas
- Publisher / Repository:
- PLoS
- Date Published:
- Journal Name:
- PLOS pathogens
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1553-7366
- Page Range / eLocation ID:
- e1011393
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational modeling suggested that adenine externalization occurs via diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that adenine accumulation and externalization stem from a salvage pathway bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 16 strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt, but apt orientation alone could not always explain purine externalization. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.more » « less
-
Abstract A redox‐neutralS‐nitrosation of thiol has been achieved at a dicopper(I,I) center. Treatment of dicopper (I,I) complex with excess NO.and thiol generates a dicopper (I,I) di‐S‐nitrosothiol complex [CuICuI(RSNO)2]2+or dicopper (I,I) mono‐S‐nitrosothiol complex [CuICuI(RSNO)]2+, which readily release RSNO in 88–94 % yield. TheS‐nitrosation proceeds by a mixed‐valence [CuIICuIII(μ‐O)(μ‐NO)]2+species, which deprotonates RS‐H at the basic μ‐O site and nitrosates RS−at the μ‐NO site. The [CuIICuIII(μ‐O)(μ‐NO)]2+complex is also competent forO‐nitrosation of MeOH. A rare [CuIICuII(μ‐NO)(OMe)]2+intermediate was isolated and fully characterized, suggesting theS‐nitrosation may proceed through the intermediary of analogous [CuIICuII(μ‐NO)(SR)]2+species. This redox‐ and proton‐neutralS‐nitrosation process is the first functional model of ceruloplasmin in mediatingS‐nitrosation of external thiols, with implications for biological copper sites in the interconversion of NO./RSNO.more » « less
-
Abstract The Sco protein fromThermus thermophilushas previously been shown to perform a disulfide bond reduction in the CuAprotein fromT. thermophilus, which is a soluble protein engineered from subunit II of cytochromeba3oxidase that lacks the transmembrane helix. The native cysteines onTtSco andTtCuAwere mutated to serine residues to probe the reactivities of the individual cysteines. Conjugation of TNB to the remaining cysteine inTtCuAand subsequent release upon incubation with the complementaryTtSco protein demonstrated the formation of the mixed disulfide intermediate. The cysteine ofTtSco that attacks the disulfide bond in the targetTtCuAprotein was determined to beTtSco Cysteine 49. This cysteine is likely more reactive than Cysteine 53 due to a higher degree of solvent exposure. Removal of the metal binding histidine, His 139, does not change MDI formation. However, altering the arginine adjacent to the reactive cysteine in Sco (Arginine 48) does alter the formation of the MDI. Binding of Cu2+or Cu+toTtSco prior to reaction withTtCuAwas found to preclude formation of the mixed disulfide intermediate. These results shed light on a mechanism of disulfide bond reduction by theTtSco protein and may point to a possible role of metal binding in regulating the activity. ImportanceThe function of Sco is at the center of many studies. The disulfide bond reduction in CuAby Sco is investigated herein and the effect of metal ions on the ability to reduce and form a mixed disulfide intermediate are also probed.more » « less
-
Claesen, Jan (Ed.)ABSTRACT The human skin microbiome is a diverse ecosystem that can help prevent infections by producing biomolecules and peptides that inhibit growth and virulence of bacterial pathogens.Staphylococcus aureusis a major human pathogen responsible for diseases that range from acute skin and soft tissue infections to life-threatening septicemia. Its ability to form biofilms is a key virulence factor contributing to its success as a pathogen as well as to its increased antimicrobial resistance. Here, we investigated the ability of bacterial skin commensals to produce molecules that inhibitS. aureusbiofilm formation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified 77 human skin microbiome bacterial isolates fromStaphylococcusandBacillusgenera. Metabolites from cell-free concentrated media (CFCM) from 26 representative isolates were evaluated for their ability to inhibit biofilm formation by both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA)S. aureusstrains. CFCM, derived from most of the isolates, inhibited biofilm formation to varying extents but did not inhibit planktonic growth ofS. aureus. Size fractionation of the CFCM of threeS.epidermidisisolates indicated that they produce different bioactive molecules. Cluster analysis, based on either MALDI-TOF mass spectra or whole-genome sequencing draft genomes, did not show clear clusters associated with levels of biofilm inhibition amongS. epidermidisstrains. Finally, similar biosynthetic gene clusters were detected in allS. epidermidisstrains analyzed. These findings indicate that several bacterial constituents of the human skin microbiome display antibiofilmin vitroactivity, warranting further investigation on their potential as novel therapeutic agents. IMPORTANCEThe skin is constantly exposed to the environment and consequently to numerous pathogens. The bacterial community that colonizes healthy skin is thought to play an important role in protecting us against infections.S. aureusis a leading cause of death worldwide and is frequently involved in several types of infections, including skin and soft tissue infections. Its ability to adhere to surfaces and produce biofilms is considered an important virulence factor. Here, we analyzed the activity of different species of bacteria isolated from healthy skin onS. aureusbiofilm formation. We found that some species ofStaphylococcusandBacilluscan reduceS. aureusbiofilm formation, although a generally lower level of inhibitory activity was observed compared toS. epidermidisisolates. AmongS. epidermidisisolates, strength of activity was dependent on the strain. Our data highlight the importance of mining the skin microbiome for isolates that could help combat skin pathogens.more » « less
An official website of the United States government

