Recently, due to accelerations in urban and industrial development, the health impact of air pollution has become a topic of key concern. Of the various forms of air pollution, fine atmospheric particulate matter (PM2.5; particles less than 2.5 micrometers in diameter) appears to pose the greatest risk to human health. While even moderate levels of PM2.5can be detrimental to health, spikes in PM2.5to atypically high levels are even more dangerous. These spikes are believed to be associated with regionally specific meteorological factors. To quantify these associations, we develop a Bayesian spatiotemporal quantile regression model to estimate the spatially varying effects of meteorological variables purported to be related to PM2.5levels. By adopting a quantile regression model, we are able to examine the entire distribution of PM2.5levels; for example, we are able to identify which meteorological drivers are related to abnormally high PM2.5levels. Our approach uses penalized splines to model the spatially varying meteorological effects and to account for spatiotemporal dependence. The performance of the methodology is evaluated through extensive numerical studies. We apply our modeling techniques to 5 years of daily PM2.5data collected throughout the eastern United States to reveal the effects of various meteorological drivers.
The health risks associated with particulate matter pollution (PM2.5) highlight the importance of comprehending key drivers of its spatial and temporal variability. While explanatory modeling is widely used for statistical inference in such applications, the role of wind variables (speed, direction) and their interplay with built environment are often overlooked. This study addresses this gap through a mobile air quality campaign in a suburban area over 10 days for each of three distinct seasons. We developed four innovative wind-based buffers to account for the wind factors and assess the impact of LiDAR-derived 3D built environment structure on PM2.5variability at local and regional scales. Our second objective is to assess the predictive capabilities of wind-based variables. Results indicate that in our low-elevation, low-rise building study area, the built environment does not emerge as a significant factor, contrary to findings in larger, denser urban areas. Wind direction proves more effective in capturing concentration fluctuations than wind speed, and its interaction with pollution source orientation can change pollution dynamics. This study introduces new insights and methodologies for incorporating wind-related factors into the analysis of air pollution dynamics, offering opportunities for further investigation in various urban settings.
more » « less- Award ID(s):
- 2117505
- NSF-PAR ID:
- 10506324
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Transactions in Urban Data, Science, and Technology
- Volume:
- 3
- Issue:
- 1-2
- ISSN:
- 2754-1231
- Format(s):
- Medium: X Size: p. 61-79
- Size(s):
- p. 61-79
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The frequent episodes of severe air pollution over China during recent years have posed serious health threats to densely populated eastern China. Although several studies investigated the linkage between enhanced severity and frequency of air pollution and the large‐scale weather patterns over China, the day‐to‐day covariability between them, as well as its local and remote mechanisms, has not been systematically documented. The wintertime synoptic covariability between PM2.5and large‐scale meteorological fields is studied using surface observations of PM2.5in 2013/2014–2016/2017 and ERA‐Interim meteorological fields through maximum covariance analysis (MCA). The first MCA mode (MCA1) suggests a consistent accumulation of ambient PM2.5as a result of weakened winds that block the pollutant removal passage in heavily polluted areas of eastern China, as well as moist air from southeast coast favoring haze formation. A northeast–southwest belt that extends into northeastern China and central China on each end is more sensitive to MCA1. The second MCA mode (MCA2) shows a north–south dipole in PM2.5linked to the contrast of boundary layer height and surface wind speed between northern and southern regions of China. Spatial patterns of both modes are supported by the GEOS‐Chem chemistry transport model with realistic emission inventory. The spatial patterns of the two modes are robust on the interannual time scales. Based on that, we investigate the variability of the first two modes of the identified modes on the multidecadal scale by projecting GPM_500 pattern to 1981–2010. Correlation analysis of the projected time series and climate indices over 30 years indicates the possible linkage of Arctic oscillation, ENSO indices, Pacific decadal oscillation and east Atlantic/western Russia to regional air pollution patterns over China.
-
Introduction: Traditional methods to estimate exposure to PM2.5(particulate matter with less than 2.5 µm in diameter) have typically relied on limited regulatory monitors and do not consider human mobility and travel. However, the limited spatial coverage of regulatory monitors and the lack of consideration of mobility limit the ability to capture actual air pollution exposure.Methods: This study aims to improve traditional exposure assessment methods for PM2.5by incorporating the measurements from a low-cost sensor network (PurpleAir) and regulatory monitors, an automated machine learning modeling framework, and big human mobility data. We develop a monthly-aggregated hourly land use regression (LUR) model based on automated machine learning (AutoML) and assess the model performance across eight metropolitan areas within the US.Results: Our results show that integrating low-cost sensor with regulatory monitor measurements generally improves the AutoML-LUR model accuracy and produces higher spatial variation in PM2.5concentration maps compared to using regulatory monitor measurements alone. Feature importance analysis shows factors highly correlated with PM2.5concentrations, including satellite aerosol optical depth, meteorological variables, vegetation, and land use. In addition, we incorporate human mobility data on exposure estimates regarding where people visit to identify spatiotemporal hotspots of places with higher risks of exposure, emphasizing the need to consider both visitor numbers and PM2.5concentrations when developing exposure reduction strategies.Discussion: This research provides important insights for further public health studies on air pollution by comprehensively assessing the performance of AutoML-LUR models and incorporating human mobility into considering human exposure to air pollution. -
Abstract In an era where air pollution poses a significant threat to both the environment and public health, we present a network-based approach to unravel the dynamics of extreme pollution events. Leveraging data from 741 monitoring stations in the contiguous United States, we have created dynamic networks using time-lagged correlations of hourly particulate matter (PM2.5) data. The established spatial correlation networks reveal significant PM2.5anomalies during the 2020 and 2021 wildfire seasons, demonstrating the approach’s sensitivity to detecting regional pollution phenomena. The methodology also provides insights into smoke transport and network response, highlighting the persistence of air quality issues beyond visible smoke periods. Additionally, we explored meteorological variables’ impacts on network connectivity. This study enhances understanding of spatiotemporal pollution patterns, positioning spatial correlation networks as valuable tools for environmental monitoring and public health surveillance.
-
Abstract Wildfires cause elevated air pollution that can be detrimental to human health. However, health impact assessments associated with emissions from wildfire events are subject to uncertainty arising from different sources. Here, we quantify and compare major uncertainties in mortality and morbidity outcomes of exposure to fine particulate matter (PM2.5) pollution estimated for a series of wildfires in the Southeastern U.S. We present an approach to compare uncertainty in estimated health impacts specifically due to two driving factors, wildfire‐related smoke PM2.5fields and variability in concentration‐response parameters from epidemiologic studies of ambient and smoke PM2.5. This analysis, focused on the 2016 Southeastern wildfires, suggests that emissions from these fires had public health consequences in North Carolina. Using several methods based on publicly available monitor data and atmospheric models to represent wildfire‐attributable PM2.5, we estimate impacts on several health outcomes and quantify associated uncertainty. Multiple concentration‐response parameters derived from studies of ambient and wildfire‐specific PM2.5are used to assess health‐related uncertainty. Results show large variability and uncertainty in wildfire impact estimates, with comparable uncertainties due to the smoke pollution fields and health response parameters for some outcomes, but substantially larger health‐related uncertainty for several outcomes. Consideration of these uncertainties can support efforts to improve estimates of wildfire impacts and inform fire‐related decision‐making.