ABSTRACT In the absence of supplementary heat, the radiative cooling of halo gas around massive galaxies (Milky Way mass and above) leads to an excess of cold gas or stars beyond observed levels. Active galactic nucleus jet-induced heating is likely essential, but the specific properties of the jets remain unclear. Our previous work concludes from simulations of a halo with $$10^{14} \,\mathrm{ M}_\odot$$ that a successful jet model should have an energy flux comparable to the free-fall energy flux at the cooling radius and should inflate a sufficiently wide cocoon with a long enough cooling time. In this paper, we investigate three jet modes with constant fluxes satisfying the criteria, including high-temperature thermal jets, cosmic ray (CR)-dominant jets, and widely precessing kinetic jets in $$10^{12}-10^{15}\, {\rm M}_{\odot }$$ haloes using high-resolution, non-cosmological magnetohydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, conduction, and viscosity. We find that scaling the jet energy according to the free-fall energy at the cooling radius can successfully suppress the cooling flows and quench galaxies without violating observational constraints. On the contrary, if we scale the energy flux based on the total cooling rate within the cooling radius, strong interstellar medium cooling dominates this scaling, resulting in a jet flux exceeding what is needed. Among the three jet types, the CR-dominant jet is most effective in suppressing cooling flows across all surveyed halo masses due to enhanced CR pressure support. We confirm that the criteria for a successful jet model work across a wider range, encompassing halo masses of $$10^{12}-10^{15} {\rm M_\odot }$$.
more »
« less
Active galactic nucleus jet feedback in hydrostatic haloes
ABSTRACT Feedback driven by jets from active galactic nuclei is believed to be responsible for reducing cooling flows in cool-core galaxy clusters. We use simulations to model feedback from hydrodynamic jets in isolated haloes. While the jet propagation converges only after the diameter of the jet is well resolved, reliable predictions about the effects these jets have on the cooling time distribution function only require resolutions sufficient to keep the jet-inflated cavities stable. Comparing different model variations, as well as an independent jet model using a different hydrodynamics code, we show that the dominant uncertainties are the choices of jet properties within a given model. Independent of implementation, we find that light, thermal jets with low momentum flux tend to delay the onset of a cooling flow more efficiently on a 50 Myr time-scale than heavy, kinetic jets. The delay of the cooling flow originates from a displacement and boost in entropy of the central gas. If the jet kinetic luminosity depends on accretion rate, collimated, light, hydrodynamic jets are able to reduce cooling flows in haloes, without a need for jet precession or wide opening angles. Comparing the jet feedback with a ‘kinetic wind’ implementation shows that equal amounts of star formation rate reduction can be achieved by different interactions with the halo gas: the jet has a larger effect on the hot halo gas while leaving the denser, star-forming phase in place, while the wind acts more locally on the star-forming phase, which manifests itself in different time-variability properties.
more »
« less
- PAR ID:
- 10506357
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 523
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1104-1125
- Size(s):
- p. 1104-1125
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT In several models of galaxy formation feedback occurs in cycles or mainly at high redshift. At times and in regions where feedback heating is ineffective, hot gas in the galaxy halo is expected to form a cooling flow, where the gas advects inward on a cooling timescale. Cooling flow solutions can thus be used as a benchmark for observations and simulations to constrain the timing and extent of feedback heating. Using analytic calculations and idealized 3D hydrodynamic simulations, we show that for a given halo mass and cooling function, steady-state cooling flows form a single-parameter family of solutions, while initially hydrostatic gaseous haloes converge on one of these solutions within a cooling time. The solution is thus fully determined once either the mass inflow rate $${\dot{M}}$$ or the total halo gas mass are known. In the Milky Way halo, a cooling flow with $${\dot{M}}$$ equal to the star formation rate predicts a ratio of the cooling time to the free-fall time of ∼10, similar to some feedback-regulated models. This solution also correctly predicts observed $$\rm{O\,{\small VII}}$$ and $$\rm{O\,{\small VIII}}$$ absorption columns, and the gas density profile implied by $$\rm{O\,{\small VII}}$$ and $$\rm{O\,{\small VIII}}$$ emission. These results suggest ongoing heating by feedback may be negligible in the inner Milky-Way halo. Extending similar solutions out to the cooling radius however underpredicts observed $$\rm{O\,{\small VI}}$$ columns around the Milky-Way and around other low-redshift star-forming galaxies. This can be reconciled with the successes of the cooling flow model with either a mechanism which preferentially heats the $$\rm{O\,{\small VI}}$$-bearing outer halo, or alternatively if $$\rm{O\,{\small VI}}$$ traces cool photoionized gas beyond the accretion shock. We also demonstrate that the entropy profiles of some of the most relaxed clusters are reasonably well described by a cooling flow solution.more » « less
-
ABSTRACT Without additional heating, radiative cooling of the halo gas of massive galaxies (Milky Way-mass and above) produces cold gas or stars exceeding that observed. Heating from active galactic nucleus (AGN) jets is likely required, but the jet properties remain unclear. This is particularly challenging for galaxy simulations, where the resolution is orders-of-magnitude insufficient to resolve jet formation and evolution. On such scales, the uncertain parameters include the jet energy form [kinetic, thermal, cosmic ray (CR)]; energy, momentum, and mass flux; magnetic fields; opening angle; precession; and duty cycle. We investigate these parameters in a $$10^{14}\, {\rm M}_{\odot }$$ halo using high-resolution non-cosmological magnetohydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, conduction, and viscosity. We explore which scenarios qualitatively meet observational constraints on the halo gas and show that CR-dominated jets most efficiently quench the galaxy by providing CR pressure support and modifying the thermal instability. Mildly relativistic (∼MeV or ∼1010K) thermal plasma jets work but require ∼10 times larger energy input. For fixed energy flux, jets with higher specific energy (longer cooling times) quench more effectively. For this halo mass, kinetic jets are inefficient at quenching unless they have wide opening or precession angles. Magnetic fields also matter less except when the magnetic energy flux reaches ≳ 1044 erg s−1 in a kinetic jet model, which significantly widens the jet cocoon. The criteria for a successful jet model are an optimal energy flux and a sufficiently wide jet cocoon with a long enough cooling time at the cooling radius.more » « less
-
ABSTRACT The early growth of black holes (BHs) in atomic-cooling haloes is likely influenced by feedback on the surrounding gas. While the effects of radiative feedback are well-documented, mechanical feedback, particularly from active galactic nucleus (AGN) jets, has been comparatively less explored. Building on our previous work that examined the growth of a 100 $${\rm M_\odot }$$ BH in a constant density environment regulated by AGN jets, we expand the initial BH mass range from 1 to $$10^4\, {\rm M_\odot }$$ and adopt a more realistic density profile for atomic-cooling haloes. We reaffirm the validity of our analytic models for jet cocoon propagation and feedback regulation. We identify several critical radii – namely, the terminal radius of jet cocoon propagation, the isotropization radius of the jet cocoon, and the core radius of the atomic-cooling halo – that are crucial in determining BH growth given specific gas properties and jet feedback parameters. In a significant portion of the parameter space, our findings show that jet feedback substantially disrupts the halo’s core during the initial feedback episode, preventing BH growth beyond $$10^4 \, {\rm M_\odot }$$. Conversely, conditions characterized by low jet velocities and high gas densities enable sustained BH growth over extended periods. We provide a prediction for the BH mass growth as a function of time and feedback parameters. We found that, to form a supermassive BH ($$\gt 10^6 \, {\rm M_\odot }$$) within 1 Gyr entirely by accreting gas from an atomic-cooling halo, the jet energy feedback efficiency must be $$\lesssim 10^{-4} \dot{M}_{\rm BH} c^2$$ even if the seed BH mass is $$10^4 \, {\rm M_\odot }$$.more » « less
-
Abstract The circumgalactic medium (CGM) is a reservoir of metals and star-forming fuel. Most baryons in the Universe are in the CGM or the intergalactic medium (IGM). The baryon cycle—how mass and metals reach the CGM from the inner regions of the galaxy and how gas from the CGM replenishes star-forming activity in the inner regions—is an essential question in galaxy evolution. In this paper, we study the flow of mass and metals in a stacked sample of 2770 isolated halos from the IllustrisTNG100 cosmological hydrodynamic simulation. The mean gas flow as a function of radius and angle is similar across a large galactic mass range when accounting for different feedback modes. Although both star formation and black holes cause powerful outflows, the flows from star formation are more angularly restricted. Black hole feedback dominates mass flow throughout the halo, while star formation feedback mainly affects the inner region. When scaling by virial radius (Rv), large dynamical changes occur at 0.2Rvfor most halos, suggesting a characteristic size for the inner galaxy. Despite kinetic-mode feedback from black holes being the primary quenching mechanism in IllustrisTNG, a small population of high-mass kinetic-mode disks are able to form stars.more » « less
An official website of the United States government
