Abstract MotivationThe mapping from codon to amino acid is surjective due to codon degeneracy, suggesting that codon space might harbor higher information content. Embeddings from the codon language model have recently demonstrated success in various protein downstream tasks. However, predictive models for residue-level tasks such as phosphorylation sites, arguably the most studied Post-Translational Modification (PTM), and PTM sites prediction in general, have predominantly relied on representations in amino acid space. ResultsWe introduce a novel approach for predicting phosphorylation sites by utilizing codon-level information through embeddings from the codon adaptation language model (CaLM), trained on protein-coding DNA sequences. Protein sequences are first reverse-translated into reliable coding sequences by mapping UniProt sequences to their corresponding NCBI reference sequences and extracting the exact coding sequences from their GenBank format using a dynamic programming-based global pairwise alignment. The resulting coding sequences are encoded using the CaLM encoder to generate codon-aware embeddings, which are subsequently integrated with amino acid-aware embeddings obtained from a protein language model, through an early fusion strategy. Next, a window-level representation of the site of interest, retaining the full sequence context, is constructed from the fused embeddings. A ConvBiGRU network extracts feature maps that capture spatiotemporal correlations between proximal residues within the window. This is followed by a prediction head based on a Kolmogorov-Arnold network (KAN) using the derivative of gaussian wavelet transform to generate the inference for the site. The overall model, dubbed CaLMPhosKAN, performs better than the existing approaches across multiple datasets. Availability and implementationCaLMPhosKAN is publicly available at https://github.com/KCLabMTU/CaLMPhosKAN. 
                        more » 
                        « less   
                    
                            
                            LMCrot: an enhanced protein crotonylation site predictor by leveraging an interpretable window-level embedding from a transformer-based protein language model
                        
                    
    
            Abstract MotivationRecent advancements in natural language processing have highlighted the effectiveness of global contextualized representations from protein language models (pLMs) in numerous downstream tasks. Nonetheless, strategies to encode the site-of-interest leveraging pLMs for per-residue prediction tasks, such as crotonylation (Kcr) prediction, remain largely uncharted. ResultsHerein, we adopt a range of approaches for utilizing pLMs by experimenting with different input sequence types (full-length protein sequence versus window sequence), assessing the implications of utilizing per-residue embedding of the site-of-interest as well as embeddings of window residues centered around it. Building upon these insights, we developed a novel residual ConvBiLSTM network designed to process window-level embeddings of the site-of-interest generated by the ProtT5-XL-UniRef50 pLM using full-length sequences as input. This model, termed T5ResConvBiLSTM, surpasses existing state-of-the-art Kcr predictors in performance across three diverse datasets. To validate our approach of utilizing full sequence-based window-level embeddings, we also delved into the interpretability of ProtT5-derived embedding tensors in two ways: firstly, by scrutinizing the attention weights obtained from the transformer’s encoder block; and secondly, by computing SHAP values for these tensors, providing a model-agnostic interpretation of the prediction results. Additionally, we enhance the latent representation of ProtT5 by incorporating two additional local representations, one derived from amino acid properties and the other from supervised embedding layer, through an intermediate fusion stacked generalization approach, using an n-mer window sequence (or, peptide/fragment). The resultant stacked model, dubbed LMCrot, exhibits a more pronounced improvement in predictive performance across the tested datasets. Availability and implementationLMCrot is publicly available at https://github.com/KCLabMTU/LMCrot. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10506434
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 40
- Issue:
- 5
- ISSN:
- 1367-4811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            O-linked β-N-acetylglucosamine (O-GlcNAc) is a distinct monosaccharide modification of serine (S) or threonine (T) residues of nucleocytoplasmic and mitochondrial proteins. O-GlcNAc modification (i.e., O-GlcNAcylation) is involved in the regulation of diverse cellular processes, including transcription, epigenetic modifications, and cell signaling. Despite the great progress in experimentally mapping O-GlcNAc sites, there is an unmet need to develop robust prediction tools that can effectively locate the presence of O-GlcNAc sites in protein sequences of interest. In this work, we performed a comprehensive evaluation of a framework for prediction of protein O-GlcNAc sites using embeddings from pre-trained protein language models. In particular, we compared the performance of three protein sequence-based large protein language models (pLMs), Ankh, ESM-2, and ProtT5, for prediction of O-GlcNAc sites and also evaluated various ensemble strategies to integrate embeddings from these protein language models. Upon investigation, the decision-level fusion approach that integrates the decisions of the three embedding models, which we call LM-OGlcNAc-Site, outperformed the models trained on these individual language models as well as other fusion approaches and other existing predictors in almost all of the parameters evaluated. The precise prediction of O-GlcNAc sites will facilitate the probing of O-GlcNAc site-specific functions of proteins in physiology and diseases. Moreover, these findings also indicate the effectiveness of combined uses of multiple protein language models in post-translational modification prediction and open exciting avenues for further research and exploration in other protein downstream tasks. LM-OGlcNAc-Site’s web server and source code are publicly available to the community.more » « less
- 
            Abstract BackgroundProtein S-nitrosylation (SNO) plays a key role in transferring nitric oxide-mediated signals in both animals and plants and has emerged as an important mechanism for regulating protein functions and cell signaling of all main classes of protein. It is involved in several biological processes including immune response, protein stability, transcription regulation, post translational regulation, DNA damage repair, redox regulation, and is an emerging paradigm of redox signaling for protection against oxidative stress. The development of robust computational tools to predict protein SNO sites would contribute to further interpretation of the pathological and physiological mechanisms of SNO. ResultsUsing an intermediate fusion-based stacked generalization approach, we integrated embeddings from supervised embedding layer and contextualized protein language model (ProtT5) and developed a tool called pLMSNOSite (protein language model-based SNO site predictor). On an independent test set of experimentally identified SNO sites, pLMSNOSite achieved values of 0.340, 0.735 and 0.773 for MCC, sensitivity and specificity respectively. These results show that pLMSNOSite performs better than the compared approaches for the prediction of S-nitrosylation sites. ConclusionTogether, the experimental results suggest that pLMSNOSite achieves significant improvement in the prediction performance of S-nitrosylation sites and represents a robust computational approach for predicting protein S-nitrosylation sites. pLMSNOSite could be a useful resource for further elucidation of SNO and is publicly available athttps://github.com/KCLabMTU/pLMSNOSite.more » « less
- 
            Phosphorylation is one of the most important post-translational modifications and plays a pivotal role in various cellular processes. Although there exist several computational tools to predict phosphorylation sites, existing tools have not yet harnessed the knowledge distilled by pretrained protein language models. Herein, we present a novel deep learning-based approach called LMPhosSite for the general phosphorylation site prediction that integrates embeddings from the local window sequence and the contextualized embedding obtained using global (overall) protein sequence from a pretrained protein language model to improve the prediction performance. Thus, the LMPhosSite consists of two base-models: one for capturing effective local representation and the other for capturing global per-residue contextualized embedding from a pretrained protein language model. The output of these base-models is integrated using a score-level fusion approach. LMPhosSite achieves a precision, recall, Matthew's correlation coefficient, and F1-score of 38.78%, 67.12%, 0.390, and 49.15%, for the combined serine and threonine independent test data set and 34.90%, 62.03%, 0.298, and 44.67%, respectively, for the tyrosine independent test data set, which is better than the compared approaches. These results demonstrate that LMPhosSite is a robust computational tool for the prediction of the general phosphorylation sites in proteins.more » « less
- 
            Accurate detection of protein sequence homology is essential for understanding evolutionary relationships and predicting protein functions, particularly for detecting remote homology in the “twilight zone” (20-35% sequence similarity), where traditional sequence alignment methods often fail. Recent studies show that embeddings from protein language models (pLM) can improve remote homology detection over traditional methods. Alignment-based approaches, such as those combining pLMs with dynamic programming alignment, further improve performance but often suffer from noise in the resulting similarity matrices. To address this, we evaluate a newly developed embedding-based sequence alignment approach that refines residue-level embedding similarity using K-means clustering and double dynamic programming (DDP). We show that the incorporation of clustering and DDP contributes substantially to the improved performance in detecting remote homology. Experimental results demonstrate that our approach outperforms both traditional and state-of-the-art approaches based on pLMs on several benchmarks. Our study illustrates embedding-based alignment refined with clustering and DDP offers a powerful approach for identifying remote homology, with potential to evolve further as pLMs continue to advance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
