In the past decade, academic computing curricular guidelines have shifted from specifying knowledge and occasionally technical skills to establishing the overall competence expected of graduates. For instance, Computing Curricula 2020 (CC2020) guidelines identify competency as knowledge, skills, and dispositions where “dispositions” correspond to the behavioral and professional characteristics driven by employer needs and captured by industry-driven frameworks, such as the Skills Framework for the Information Age (SFIA). Computing programs thus must also ensure that graduates have these characteristics to improve initial employment and long-term career prospects. This paper aims to understand and achieve consistency between academia and industry curricular frameworks. The CC2020 dispositions map to the responsibility characteristics for SFIA Level 3, the level appropriate for a new graduate. As the mapping is not one-to-one, the paper reviews the extent to which each SFIA responsibility characteristic requires and enables the CC22020 dispositions, identifying potential shortcomings and, conversely, the importance of each disposition as it supports the responsibility characteristics. The developed mapping is validated by relating the CC2020 dispositions to the SFIA behavioral factors, the principal “21st Century Skills,” and relevant competency-based educational frameworks. Thus, dispositions in competency-focused curricula map to the actual competencies sought by employers. Finally, the paper postulates that future computing curricula must further develop the CC2020 dispositions and relate them to SFIA to guide academic programs in their preparation of career-ready graduates to reduce the current “skills gap”.
more »
« less
Undergraduate Computer Science Curricula
There can be many conflicting goals for the design of a computer science curriculum including: immediate employability in industry, preparation for long-term success in an ever-changing discipline and preparation for graduate (that is, post-graduate) study. Emphasis on immediate employability may lead to prioritizing current tools and techniques at the expense of foundational and theoretical skills as well as broader liberal-arts education that are crucial to long-term career success and for graduate study. The implications of these conflicting goals include allocation of finite resources (time, courses in the curriculum), unwillingness of students to invest in the mathematics that they see as irrelevant to their immediate career goals, and reluctance of faculty to have their courses driven by a continually evolving marketplace of tools and APIs. A balanced curriculum benefits all stakeholders: students, employers, and faculty. Would a data-driven approach help faculty design curricula that effectively balance these multiple goals? For example, if we ask graduates of computer science programs to reflect on the impact of their undergraduate education, explicitly focusing on short and long-term impact, will there be enough meaningful data to significantly inform curricular design? A recent survey of industry professionals undertaken by the ACM/IEEE-CS/AAAI 2023 Computer Science Curricular Task Force (CS2023) points the way. This column presents one aspect of that survey—a focus on comparing short-term versus long-term views—and calls for similar surveys of industry professionals to be conducted on an ongoing basis to refine our understanding of the role played by various elements of undergraduate computer science curricula in the success of graduates.
more »
« less
- Award ID(s):
- 2110771
- PAR ID:
- 10506514
- Publisher / Repository:
- Association for Computing Machinery
- Date Published:
- Journal Name:
- Communications of the ACM
- Volume:
- 67
- Issue:
- 2
- ISSN:
- 0001-0782
- Page Range / eLocation ID:
- 29 to 31
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite calls over the past twenty years to develop graduate STEM education models that prepare students for the new post-graduate workforce, few innovations in graduate STEM education have been disseminated. Given the diversity of graduate candidates’ prior skills, preparation, and individual career aspirations, modernizing STEM graduate programs is needed to support and empower student success in graduate programs and beyond. In this session, participants will learn about new research into the development and implementation of a personalized learning model (PLM) for graduate STEM education employed in a chemical engineering department at an R1 university. Our PLM integrates student-centered approaches in coursework, research, and professional development in multiple programmatic components. The key components of our PLM include guided student creation of independent development plans (IDPs), modularization of graduate courses and professional development streams, scaffolding curricular instruction to prioritize independence and mastery, using IDPs for directed research and career discussions and assessment of student performance and learning, and evaluation of the program from current students, alumni, faculty, and industry partners. Our comprehensive PLM plan is designed to maximize impact through personalized learning touchpoints throughout all aspects of graduate training. This presentation will focus on one element of our PLM, the modularization of the chemical engineering core graduate courses. To ensure the learning in core graduate courses reflects the diverse needs of chemical engineers, we generated a body of knowledge (BOK) for graduate chemical engineering in collaboration with our technical advisory board (TAB), which included chemical engineers and people that work with chemical engineers from industry, national labs, academia, and entrepreneurial representatives. We started by collecting the learning objectives (LO’s) from all core chemical engineering courses: Thermodynamics, Kinetics and Reactor Design, Transport Phenomena, Mathematical Methods, and Issues in Research and Teaching. The LO’s were refined by alignment with course assignments and activities and re-written using the most accurate Bloom’s Taxonomy verbs in collaboration with an instructional designer. We utilized GroupWisdomTM for group concept mapping of the new LO’s and provided an opportunity for the TAB to add new LO’s, identified by the individuals in the TAB to be critical for success in each member’s occupation. LO’s for the chemical engineering core courses were sorted on the level of knowledge (undergraduate, graduate, and specialized) and rated for importance by the TAB. Using GroupWisdom’sTM analytic tool for creating a similarity matrix for sorting the level of LO’s, multidimensional scaling, and hierarchical cluster analysis, all core course LO’s have been grouped into 6 clusters. These clusters, along with the current course list and the LO importance ratings, helped us visualize converting chemical engineering core courses into 1-credit hour modules. This restructured curriculum offers opportunities for ensuring that students have learned the requisite prior knowledge by review of essential undergraduate principles, streamlining essential graduate-level material, and supporting self-directed learning through the selection of specialized modules that align with students’ research and career goals. This proposed approach shifts core graduate chemical engineering education to an asset-based system, addressing knowledge gaps and ensuring rigorous, tailored learning experiences.more » « less
-
null (Ed.)Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges.more » « less
-
null (Ed.)Natural disasters, such as 2017 hurricanes Irma and María, the 2020 earthquakes in Puerto Rico and the ongoing COVID-19 pandemic, affect students in many aspects including economic, socio-emotional, and academic performance progress. To ensure that students can cope with the aftermath of such searing events, it is necessary to develop initiatives that address these three aspects. Satisfying the financial need is essential, but a long-term solution is mandatory. Hence, providing socio-emotional and academic support and cultivating a sense of purpose are critical to prevent attrition. To secure continued STEM success among students affected by natural disasters, the National Science Foundation has funded several projects at the University of Puerto Rico, a Hispanic Serving Institution. This manuscript presents four NSF-funded projects sharing the common goal of providing support to STEM students to ensure that they succeed despite the said challenges. The first project, titled Nanotechnology Center for Biomedical, Environmental and Sustainability Application, leans heavily on research teams dedicated to design new Nanotechnology platforms to address biomedical and environmental challenges and simultaneously trains a new generation of nanoengineers and nanoscientists throughout the educational echelon starting from public intermediate schools through doctoral programs. The second project, entitled Ecosystem to Expand Capabilities and Opportunities for STEM-Scholars (EECOS), developed an integrated framework that provides support to 62 low-income, talented, STEM students who were severely affected by Hurricane María and 2019-2020 earthquakes (58 undergraduate and 4 graduate). The project provided participants with financial, academic, socio-emotional, and career motivation support needed to complete their programs. The third project, Program for Engineering Access, Retention, and LIATS Success (PEARLS) addresses college access and economic hardships of Low-Income Academically Talented Students (LIATS). It aims at increasing the retention and academic success of talented engineering students coming from economically disadvantaged families. The fourth project, Resilient Infrastructure and Sustainability Education – Undergraduate Program (RISE-UP), has developed an interdisciplinary curriculum to educate cadres of Hispanic students on infrastructure resilience to temper and to overcome the effects of such natural disasters. Three campuses of this institution system collaborate in this interdisciplinary undertaking. Participating students are pursuing undergraduate degrees in engineering, architecture, and surveying who take the entailed courses together and participate in co-curricular activities (both online and in-person through site visits). The new curricular endeavor prepares them to design infrastructure that can withstand the impact of natural events. The expect outcome is to form cohorts of graduates ready to take on real-life infrastructure failures caused by disasters and provide them with an edge in their future professions. The present work provides a range of scalable and portable strategies that universities with underrepresented minorities in STEM programs could deploy to address the immediate and continued needs of students affected by natural disasters to secure academic success. These strategies can contribute to the development of professionals with the skills and experience to deal with severe circumstances such as those effected by natural disasters as well as the preparation to solve infrastructure challenges.more » « less
-
null (Ed.)Teaching parallel and distributed computing (PDC) concepts is an ongoing and pressing concern for many undergraduate educators. The ACM/IEEE CS Joint Task Force on Computing Curricula (CS2013) recommends 15 hours of PDC education in the undergraduate curriculum. Most recently, the 2019 ABET Criteria for Accrediting Computer Science requires coverage of PDC topics. For faculty who are unfamiliar with PDC, the prospect of incorporating parallel computing into their courses can seem very daunting. For example, should PDC concepts be covered in a single required course (perhaps computer systems) or be scattered throughout different courses in the undergraduate curriculum? What languages are the best/easiest for students to learn PDC? How much revision is truly needed? This Birds of a Feather session provides a platform for computing educators to discuss the common challenges they face when attempting to incorporate PDC into their curricula and share potential solutions. Chiefly, the organizers are interested in identifying "gap areas" that hinder a faculty member's ability to integrate PDC into their undergraduate courses. The multiple viewpoints and expertise provided by the BOF leaders should lead to lively discourse and enable experienced faculty to share their strategies with those beginning to add PDC across their curricula. We anticipate that this session will be of interest to all CS faculty looking to integrate PDC into their courses and curricula.more » « less
An official website of the United States government

