skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Piloting A Personalized Learning Model for Chemical Engineering Graduate Education – Lessons Learned from Creating a Chemical Engineering Body of Knowledge
Despite calls over the past twenty years to develop graduate STEM education models that prepare students for the new post-graduate workforce, few innovations in graduate STEM education have been disseminated. Given the diversity of graduate candidates’ prior skills, preparation, and individual career aspirations, modernizing STEM graduate programs is needed to support and empower student success in graduate programs and beyond. In this session, participants will learn about new research into the development and implementation of a personalized learning model (PLM) for graduate STEM education employed in a chemical engineering department at an R1 university. Our PLM integrates student-centered approaches in coursework, research, and professional development in multiple programmatic components. The key components of our PLM include guided student creation of independent development plans (IDPs), modularization of graduate courses and professional development streams, scaffolding curricular instruction to prioritize independence and mastery, using IDPs for directed research and career discussions and assessment of student performance and learning, and evaluation of the program from current students, alumni, faculty, and industry partners. Our comprehensive PLM plan is designed to maximize impact through personalized learning touchpoints throughout all aspects of graduate training. This presentation will focus on one element of our PLM, the modularization of the chemical engineering core graduate courses. To ensure the learning in core graduate courses reflects the diverse needs of chemical engineers, we generated a body of knowledge (BOK) for graduate chemical engineering in collaboration with our technical advisory board (TAB), which included chemical engineers and people that work with chemical engineers from industry, national labs, academia, and entrepreneurial representatives. We started by collecting the learning objectives (LO’s) from all core chemical engineering courses: Thermodynamics, Kinetics and Reactor Design, Transport Phenomena, Mathematical Methods, and Issues in Research and Teaching. The LO’s were refined by alignment with course assignments and activities and re-written using the most accurate Bloom’s Taxonomy verbs in collaboration with an instructional designer. We utilized GroupWisdomTM for group concept mapping of the new LO’s and provided an opportunity for the TAB to add new LO’s, identified by the individuals in the TAB to be critical for success in each member’s occupation. LO’s for the chemical engineering core courses were sorted on the level of knowledge (undergraduate, graduate, and specialized) and rated for importance by the TAB. Using GroupWisdom’sTM analytic tool for creating a similarity matrix for sorting the level of LO’s, multidimensional scaling, and hierarchical cluster analysis, all core course LO’s have been grouped into 6 clusters. These clusters, along with the current course list and the LO importance ratings, helped us visualize converting chemical engineering core courses into 1-credit hour modules. This restructured curriculum offers opportunities for ensuring that students have learned the requisite prior knowledge by review of essential undergraduate principles, streamlining essential graduate-level material, and supporting self-directed learning through the selection of specialized modules that align with students’ research and career goals. This proposed approach shifts core graduate chemical engineering education to an asset-based system, addressing knowledge gaps and ensuring rigorous, tailored learning experiences.  more » « less
Award ID(s):
2325599
PAR ID:
10639489
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite calls over the past two decades to develop and deploy graduate STEM education models that prepare students for a variety of careers outside of academia, few innovations have emerged to meet students at their current skill and preparation levels when entering their graduate studies while also considering students’ individual desired career paths. The U.S.’s current approach to graduate STEM education does not emphasize preparing students with the professional skills and experience outside the lab. Further, students from differing socioeconomic and underserved backgrounds are often not adequately supported. Through a National Science Foundation Innovations in Graduate Education (IGE) award, the University of Pittsburgh Swanson School of Engineering is creating and validating a personalized learning model (PLM) for graduate education within the Department of Chemical and Petroleum Engineering. The goal of this model is to transform and modernize graduate STEM education through a personalized, inclusive, and student-centered approach, which will, in turn, advance existing knowledge on the relationship between personalized learning and student outcomes. The principles of personalized learning guide the PLM. The PLM is comprised of five components. The first three components provide an intentional approach to learning: Instructional Goals developed for each student based on a learner profile and individual development plans (IDP), a purposeful Task Environment that breaks the traditional three-credit coursework into modules and co-curricular professional development streams, and a resolute approach to Scaffolding Instruction that leads to mastery in the student’s area of focus. The last two components provide feedback and reflection: Assessment of Performance Learning quantifies students’ progress, and Reflection and Evaluation, where improvement opportunities help the student to develop further. Incorporating personalization at every touchpoint of a graduate student’s academic journey creates an authentic, customized, student-centered approach to graduate education. This paper describes in detail the model and the literature behind its development, along with assessments used to guide students. 
    more » « less
  2. U.S. graduate engineering programs traditionally follow a “one-size-fits-all” approach that prioritizes research skills, is slow to adapt to industry trends, and defaults to training students for academic careers. Further, these programs implicitly assume that students start at the same knowledge level, disregarding differences in educational preparation and students’ backgrounds, including socioeconomic and sociocultural factors, prior work experience, and professional development. Through a National Science Foundation Innovations in Graduate Education award, the University of Pittsburgh Swanson School of Engineering is creating and validating a five-component personalized learning model (PLM) for graduate education within the Department of Chemical and Petroleum Engineering. This model, designed around the students' self-identified goals, aims to modernize graduate STEM education through a student-centered approach, advancing existing knowledge on the relationship between personalized learning and student outcomes. The first three components provide an intentional approach to learning: Instructional Goals developed for each student based on a learner profile and individual development plans (IDP), a purposeful Task Environment that breaks the traditional three-credit coursework into modules and co-curricular professional development streams, and a persistent approach to Scaffolding Instruction that leads to students’ mastery. The last two components provide feedback and reflection: Assessment of Performance Learning and Reflection and Evaluation. This paper reports on the methodology, results, and application of work conducted on the second component of the model, the Task Environment. This component purposefully breaks the traditional three-credit coursework into single-credit classes, specifically one-credit fast-paced fundamentals review, one-credit graduate-level core content, and one-credit graduate-level specialized content. This change provides a flexible and personalized learning experience. It enables students to customize their education to fit program requirements and align with their interests, thus allowing students to have agency on the breadth and depth of their intellectual development. To create the modularized curriculum, we initiated a collaborative process that leveraged the collective expertise of our chemical engineering faculty and external subject matter experts (SMEs), including chemical engineers from industry, government, academia, and start-ups. Starting with our faculty's existing learning objectives from each core course, we employed GroupWisdom group concept mapping software to (1) brainstorm on additional graduate-level chemical engineering learning objectives, (2) group the learning objectives into one of three levels: fundamental, graduate core, and specialized topics for each course topic, and (3) rate the importance of each learning objective. The multi-session group concept mapping technique leveraged 25 SMEs. Two sets of learning objectives were produced. The first was a prioritized set of learning outcomes for each content area organized according to the three levels. The second set comprised learning outcomes necessary for graduate students to be successful post-graduation, including technical and non-technical learning objectives. For the first set, faculty have formed a learning community to interpret the results and collectively work on restructuring course content and pedagogy. For the second set, the same SMEs rated the importance of each learning objective, which informed the priority of incorporation into the revised curriculum. 
    more » « less
  3. null (Ed.)
    The COVID-19 outbreak has severely affected graduate education in science, technology, engineering, and mathematics (STEM) fields. It disrupted the learning and career development including in-person laboratory research activities and mentoring meetings. Since early 2000s, STEM graduate schools have been promoting the use of individual development plans (IDPs), which provide formalized mentorship, to support graduate students' academic and career success. It is unclear whether and to what extent the IDPs play a role in promoting mentoring and career-relevant outcomes among students during the crisis. This study presents some of the first evidence on the interrelationships of IDP status, mentoring support and satisfaction, and career attitudes with a diverse nationwide sample of STEM graduate students during the COVID-19 pandemic. 
    more » « less
  4. A learner-centered higher education ecosystem is essential to effective educational outcomes and societal advancement. Mobile devices such as smartphones, tablets, and tablet computers enable learning anytime and from any location, blurring the boundaries between formal and informal learning. When paired with effective pedagogy, mobile technologies can positively impact the teaching and learning experience for students in high-demand science, technology, engineering and mathematics (STEM) disciplines, increasing the flexibility and ease with which they are able to pursue their education while developing their professional identities as engineers. Student retention remains a problem in STEM programs. In engineering, many students do not even make it past their core courses. This poster reports on initial efforts of a two-year research study to utilize mobile technologies and a technology-enhanced curriculum to improve student engagement and learning in STEM undergraduate courses. This (work in progress) poster describes a quasi-experimental mixed methods study on implementing mobile devices (iPad and Pencil) and a technology-enhanced curriculum in an undergraduate thermal-fluids engineering course, a foundational engineering class. Research has indicated that engineering students’ performance in foundational courses is a predictor of future academic success. 
    more » « less
  5. An ongoing National Science Foundation Research Traineeship (NRT) aims to enhance graduate education by integrating research and professional skill development within a diverse, inclusive, and supportive academy. This contribution will describe several interventions within this NRT, namely, a graduate certificate on Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) – which is the research topic of the NRT – field trips to sites related to INFEWS, internships and international experiences. Moreover, the assessment and outcomes of each of these interventions will be discussed. A graduate certificate on INFEWS established through this NRT aims to 1) impart both conceptual and technical knowledge related to INFEWS to students; 2) provide them with training on key transferable skills; and 3) equip them to consider the societal, cultural, behavioral, and economic aspects of research on the food, energy, and water nexus. The starting point of the certificate is a multi-departmental and interdisciplinary course on INFEWS. In a subsequent semester students receive training on key transferrable skills in a course designed to integrate these skills with content covered in the foregoing INFEWS course. Completing these core courses gives students 6 of the 12 credit hours needed to attain the certificate. Students earn the other 6 credits by choosing from a list of elective courses. Notably, courses fulfill both certificate and degree requirements, so anticipated time-to-degree is not extended. The certificate is evaluated by assessing student learning outcomes with multiple measures, which include teacher course evaluations of individual courses, the rubric used to review a research proposal that students prepare in the transferable skills course, a professional skills dossier, competency assessments, and student post-surveys. While field trips to facilities related to INFEWS and internships at sites best aligned with their career interests – inside or outside academia – helped foster a sense of community among trainees and exposed them to various work sites and career paths, international experiences helped them gain a global perspective and appreciation for the international nature of STEM research. Evaluation data related to field trips, internships, and international experiences are collected via student focus group discussions, student post-surveys, student follow-up surveys, and alumni surveys. Additionally, the number and type of internships are tracked, and student placement with the internship host after graduation is also monitored. By sharing a description of these interventions and details about their evaluation as well as their outcomes, this contribution will inform practitioners interested in similar educational programs and experiences of both challenges and opportunities associated with these initiatives. In turn, this will help the higher education community in its pursuit to identify and implement the best and most effective practices. 
    more » « less