Abstract The apex of Earth's penultimate icehouse during the Permo‐Carboniferous coincided with dramatic glacial‐interglacial fluctuations in atmospheric CO2, sea level, and high‐latitude ice. Global transformations in marine fauna also occurred during this interval, including a rise to peak foraminiferal diversity, suggesting that glacial‐interglacial climate change impacted marine ecosystems. Nevertheless, changes in ocean circulation and temperature over the Permo‐Carboniferous and their influence on marine ecosystem change are largely unknown. Here, we present simulations of glacial and interglacial phases of the latest Carboniferous‐early Permian (∼305‐295 Ma) using the Community Earth System Model version 1.2 to provide estimates of global ocean circulation and temperature during this interval. We characterize general patterns of glacial and interglacial surface ocean currents, temperature, and salinity, and compare them to the documented abundance and distribution of Permo‐Carboniferous marine fauna as well as a preindustrial climate simulation. We then explore how glacial‐interglacial changes in atmospheric CO2, sea level, and high‐latitude ice extent impact thermohaline circulation. We find that glacial‐interglacial changes in equatorial surface temperatures are consistently ∼3–6°C. Ocean circulation is stronger overall in the glacial simulation, particularly as lower atmospheric CO2enables deep convection in the Northern Hemisphere. Wind‐driven circulation, heat transport, and upwelling intensity are stronger overall in the Permo‐Carboniferous superocean relative to the preindustrial oceans at the same level of atmospheric CO2. We also find that CO2‐induced glacial conditions of the early Permian may have promoted foraminiferal diversity through increased thermal gradients and suppressed riverine input in marine shelf environments.
more »
« less
Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition
Tracking climate change and its relationships with chemical weathering and massive volcanic activity in deep-time greatly improves our understanding of the Earth’s climate system. The Permo-Carboniferous period is a critical time interval with million year-scale glacial-deglacial cycles and massive basaltic volcanism, such as the Skagerrak-Centered (also named Skagerrak or Jutland) large igneous province. To explore the volcanism-climate interactions in this period, we obtained high precision CA-TIMS U-Pbzircon ages for three tuffaceous layers from a cored upper Pennsylvanian-lower Permian marginal marine succession in southern North China. These ages calibrate the Permo-Carboniferous biostratigraphy between ∼301–296 Ma in North China. From this dated core succession, mudrock samples and their calculated weathering index values were screened to constrain the weathering trends for the source landscapes and demonstrate a rapid increase with a subsequent decrease in source chemical weathering intensity during the period of ∼299 to 296.5 Ma. These trends coincide with the southern Gondwana glacial records, low latitude temperature changes, relative sea-level variations, and shifts in atmospheric pCO2that together document an earliest Permian climate warming-cooling perturbation with a temperature maximum at ∼298 Ma. This climate warming in the Permo-Carboniferous icehouse correlates with the emplacement of the Skagerrak-Centered large igneous province, which likely released voluminous CO2that led to climate warming during the Permo-Carboniferous transition. The immediately following cooling could possibly result from the rapid post-eruptional weathering of the massive basaltic rocks of this province in tropical latitudes, which would have sequestered atmospheric CO2and promoted return to cooler icehouse conditions. This study supports the assertation that massive basaltic volcanism could first cause rapid climate warming and then may have an overall net cooling effect as previously suggested for the Deccan Traps and the Central Atlantic Magmatic Province.
more »
« less
- Award ID(s):
- 1729882
- PAR ID:
- 10506572
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Earth and Planetary Science Letters
- Volume:
- 534
- Issue:
- C
- ISSN:
- 0012-821X
- Page Range / eLocation ID:
- 116074
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Earth’s penultimate icehouse (ca. 340–285 Ma) was a time of low atmospheric pCO2 and high pO2, formation of the supercontinent Pangaea, dynamic glaciation in the Southern Hemisphere, and radiation of the oldest tropical rainforests. Although it has been long appreciated that these major tectonic, climatic, and biotic events left their signature on seawater 87Sr/86Sr through their influence on Sr fluxes to the ocean, the temporal resolution and precision of the late Paleozoic seawater 87Sr/86Sr record remain relatively low. Here we present a high-temporal-resolution and high-fidelity record of Carboniferous– early Permian seawater 87Sr/86Sr based on conodont bioapatite from an open-water carbonate slope succession in south China. The new data define a rate of long-term rise in 87Sr/86Sr (0.000035/m.y.) from ca. 334–318 Ma comparable to that of the middle to late Cenozoic. The onset of the rapid decline in 87Sr/86Sr (0.000043/m.y.), following a prolonged plateau (318–303 Ma), is constrained to ca. 303 Ma. A major decoupling of 87Sr/86Sr and pCO2 during 303–297 Ma, coincident with the Paleozoic peak in pO2, widespread low-latitude aridification, and demise of the pan-tropical wetland forests, suggests a major shift in the dominant influence on pCO2 from continental weathering and organic carbon sequestration (as coals) on land to organic carbon burial in the ocean.more » « less
-
Abstract Large igneous provinces erupt highly reactive, predominantly basaltic lavas onto Earth’s surface, which should boost the weathering flux leading to long-term CO2drawdown and cooling following cessation of volcanism. However, throughout Earth’s geological history, the aftermaths of multiple Phanerozoic large igneous provinces are marked by unexpectedly protracted climatic warming and delayed biotic recovery lasting millions of years beyond the most voluminous phases of extrusive volcanism. Here we conduct geodynamic modelling of mantle melting and thermomechanical modelling of magma transport to show that rheologic feedbacks in the crust can throttle eruption rates despite continued melt generation and CO2supply. Our results demonstrate how the mantle-derived flux of CO2to the atmosphere during large igneous provinces can decouple from rates of surface volcanism, representing an important flux driving long-term climate. Climate–biogeochemical modelling spanning intervals with temporally calibrated palaeoclimate data further shows how accounting for this non-eruptive cryptic CO2can help reconcile the life cycle of large igneous provinces with climate disruption and recovery during the Permian–Triassic, Mid-Miocene and other critical moments in Earth’s climate history. These findings underscore the key role that outgassing from intrusive magmas plays in modulating our planet’s surface environment.more » « less
-
null (Ed.)Abstract The Permian marine-terrestrial system of the North China block provides an exceptional window into the evolution of northern temperate ecosystems during the critical transition from icehouse to greenhouse following the late Paleozoic ice age (LPIA). Despite many studies on its rich hydrocarbon reserves and climate-sensitive fossil flora, uncertain temporal constraints and correlations have hampered a thorough understanding of the records of geologic, biologic, and climatic change from the North China block. We present a new chronostratigraphy based on high-precision U-Pb chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS) geochronology of tuffs from a near-complete latest Carboniferous–Permian succession in North China. The results indicate that the predominance of continental red beds, climate aridification, and the disappearance of coals and characteristic tropical flora were well under way during the Cisuralian (Early Permian) in the North China block, significantly earlier than previously thought. A nearly 20 m.y. hiatus spanning the early Kungurian to the mid-Guadalupian (or later) is revealed in the northern North China block to have close temporal and spatial associations with the closure and/or subduction of the Paleo-Asian Ocean and its related tectonic convergence. This long hiatus was concomitant with the prominent loss of the highly diverse and abundant Cathaysian floras and the widespread invasion of the monotonous Angaran floras under arid climate conditions in the North China block. Similarities in the floral and climate shift histories between Euramerica and North China suggest that aside from the regional tectonic controls and continental movement, extensive volcanism during the Cisuralian may have played a major role in the global warming and aridification in the aftermath of the LPIA.more » « less
-
The collapse of late Permian (Lopingian) Gondwanan floras, characterized by the extinction of glossopterid gymnosperms, heralded the end of one of the most enduring and extensive biomes in Earth’s history. The Sydney Basin, Australia, hosts a near-continuous, age-constrained succession of high southern paleolatitude (∼65−75°S) terrestrial strata spanning the end-Permian extinction (EPE) interval. Sedimentological, stable carbon isotopic, palynological, and macrofloral data were collected from two cored coal-exploration wells and correlated. Six palynostratigraphic zones, supported by ordination analyses, were identified within the uppermost Permian to Lower Triassic succession, corresponding to discrete vegetation stages before, during, and after the EPE interval. Collapse of the glossopterid biome marked the onset of the terrestrial EPE and may have significantly predated the marine mass extinctions and conodont-defined Permian−Triassic Boundary. Apart from extinction of the dominant Permian plant taxa, the EPE was characterized by a reduction in primary productivity, and the immediate aftermath was marked by high abundances of opportunistic fungi, algae, and ferns. This transition is coeval with the onset of a gradual global decrease in δ13Corg and the primary extrusive phase of Siberian Traps Large Igneous Province magmatism. The dominant gymnosperm groups of the Gondwanan Mesozoic (peltasperms, conifers, and corystosperms) all appeared soon after the collapse but remained rare throughout the immediate post-EPE succession. Faltering recovery was due to a succession of rapid and severe climatic stressors until at least the late Early Triassic. Immediately prior to the Smithian−Spathian boundary (ca. 249 Ma), indices of increased weathering, thick redbeds, and abundant pleuromeian lycophytes likely signify marked climate change and intensification of the Gondwanan monsoon climate system. This is the first record of the Smithian−Spathian floral overturn event in high southern latitudes.more » « less
An official website of the United States government

